<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

精華文章Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

Fine-tuning(微調)是什麼?
打造企業專屬AI大語言模型的關鍵一步

隨著 AI 技術的蓬勃發展,AI 大語言模型的應用也日益廣泛,從企業決策到內容生成,各行各業都在探索其潛力。然而,AI 模型有時無法準確回應特定需求,或因對特殊領域的知識有限而產生錯誤資訊,此時除了檢索增強生成(Retrieval-Augmented Generation,RAG)技術外,就需要透過 Fine-tuning(微調)技術來進一步優化、提升模型準確度。本文將帶您了解Fine-tuning的運作原理,並介紹其多元的應用與商業價值。

認識 Fine-tuning(微調)

什麼是 Fine-tuning?

Fine-tuning,也就是微調,是一種針對既有 AI 大語言模型進行優化的機器學習技術,透過調整模型權重,使其在特定應用場景下的輸出結果更準確、符合預期。Fine-tuning 保留基礎模型的能力,同時針對特定領域強化應答準確性,相比從零開始訓練一個新模型,大幅節省了開發所需的成本與時間。

為什麼需要 Fine-tuning?

現成通用的 AI 大語言模型雖然功能強大,但在特定領域如法律、醫療、金融、科技製造等產業中,可能無法精確理解專業術語或規則,甚至可能產生錯誤資訊,無法直接應對每個組織或企業的獨特需求。而透過 Fine-tuning,可以讓模型深度學習特定領域的知識、更準確地理解特定語境,進而提升整體專業性與應用價值,成為企業AI部署的重要步驟。

Fine-tuning 運作流程

Fine-tuning 的作業流程通常包括以下幾個步驟:

  1. 選擇預訓練(pre-train)模型

    透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。

  2. 準備微調數據

    面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。

  3. 調整模型參數

    透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。

  4. 評估與優化

    藉由準確率(Accuracy)、召回率(Recall)、F1分數(F1 Score)等指標來衡量微調效果,並根據測試結果不斷進行調整與優化,確保模型輸出更符合使用者需求。

經過微調的AI模型,能夠更有效地應對高度定制化的需求,對於企業而言,無論在提升業務效率、改善客戶服務,或者優化內部決策過程中,都能發揮重要作用。

Fine-tuning 於企業中的應用

如前段所述,Fine-tuning 不僅是提升模型準確度的工具,更成為幫助企業提升營運效率、降低成本和創造競爭優勢的關鍵,以下進一步彙整 Fine-tuning 在企業中的三大應用價值:

  1. 增強企業專屬化服務

    透過 Fine-tuning,企業能夠調整 AI 模型的回應語氣、風格與內容,從而提供更具個性化的服務體驗。例如,在客服領域,企業可以根據不同客戶群體的特性、偏好或文化背景,調整模型的回應方式,進一步提升顧客滿意度;在科技製造業,許多特殊的產品規格、專業的用字及術語,都可以透過微調模型,讓研發人員在使用上更順暢。

  2. 提升專業知識掌握度

    Fine-tuning 可強化 AI 在特定領域的知識理解與應用能力,特別適用於法律、醫療、金融等高度專業的行業。例如,透過 Fine-tuning,使 AI 更熟悉特定的專利法條文與案例,不僅能幫助法律人員更快地檢索相關判例,還能協助草擬專業的法律文書,從而提高工作效率並確保法律建議的精準性。

  3. 提升業務流程的自動化與效率

    Fine-tuning 可根據企業的運營需求進行調整,使 AI 更精準地理解並執行特定任務,進而提升業務流程的自動化程度與運營效率,並降低人為錯誤。例如,在銷售自動化方面,一家電子商務公司可透過 Fine-tuning 優化 AI 銷售助理,使其根據顧客的購物歷史與個人偏好,自動生成量身定制的促銷訊息或產品推薦。如此一來,AI 不僅能更準確地預測顧客需求,還能主動推送適合的產品與折扣資訊,提高銷售轉化率,同時減輕銷售人員的工作負擔。

Fine-tuning 的優勢與挑戰

綜合來說,Fine-tuning 的核心價值在於 將 AI 從「通用」變成「專屬」,「標準化」變成「個人化」,讓企業能更有效地利用 AI 工具滿足需求。運用微調技術,企業可以大幅減少每次與 AI 互動所需的 Token 數量,從而降低運行成本。此外,企業可在內部環境中訓練 AI,既能確保敏感資料不外流,也能強化資料安全性,而經內部數據微調後的 AI ,能更快速生成精確回應,提升互動流暢度並減少錯誤資訊的風險。

而雖然 Fine-tuning 具有諸多好處,但是也具備一定的技術難度。一般而言,Fine-tuning 需克服的挑戰如下:

  1. 選擇合適的預訓練(pre-train)模型及微調方法

    在技術層面, Fine-tuning 微調可採用多種不同的方法,如何在保留模型原有能力(capability)的同時,又獲得最好的學習效果,需仰賴有經驗的專家給予指導,並進行系統化的實驗。

  2. 準備適當的訓練資料集

    微調數據的數量、品質以及形式都將直接影響最終成果。大量但品質低劣或格式不佳的數據,未必能得到好的微調結果;而具備高品質、形式佳的數據,即便數量有限,仍可透過數據合成(data synthesis)或強化等技術的輔助,也可能有利於微調的成功。

  3. 確保適當的運算資源

    在 Fine-tuning 微調模型時,通常需要比模型推論(inference)更多的資源,如算力和記憶體等,而有時不一定一次就能微調成功,可能需要多回合地嘗試。因此,如何有效地運用算力及資源、提高微調成功率,也是必須克服的挑戰之一。

綜前所述, Fine-tuning 是企業打造專屬 AI 模型的重要技術,能協助企業更靈活應對市場變化、拓展創新應用,無論是提升客戶服務、優化內部流程,或創造新的商業價值,都將成為數位轉型與業務成長的關鍵。若企業希望充分發揮 Fine-tuning 的效益,則可選擇與具備經驗的廠商合作,以降低試錯成本與時間,提高成功率並加速導入。

想進一步了解更多意藍AI技術嗎?
<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>生成式 AI 產業趨勢報告

下載報告生成式 AI 產業趨勢報告

生成式AI產業趨勢報告

從整體生成式AI產業應用趨勢,了解AI智能搜尋解決方案如何落地應用。

報告亮點

Part 1. 生成式 AI 話題趨勢探索
  • 1-1 生成式 AI 話題趨勢
  • 1-2 生成式 AI 的商業機會與挑戰
Part 2. 生成式 AI 的機會與應用場域
  • 2-1 生成式 AI 的應用趨勢
  • 2-2 核心技術—AI大語言模型
  • 2-3 關鍵應用—檢索增強生成(RAG)
Part 3. 以 AI Search 技術打造 AI 知識代理人
  • 3-1 本土生成式 AI 大語言模型—eLAND GOAT
  • 3-2 AI Search for KM 新一代生成式 AI 知識管理
  • 3-3 AI 驅動的多元未來:案例展示

生成式 AI 是基於深度學習,透過擁有大參數量的神經網絡來記憶學習大量的資料,並且在沒有明確標籤或指導之下,自行學習資料的分佈,來生成更多類似的資料。
而隨著近年來 AI 技術的持續創新與突破,百工百業都迎來了前所未有的數位變革。在這個數位轉型的關鍵時刻,AI 的導入與應用已成為各行各業提升競爭力和效率的重要策略。企業在應對市場挑戰與客戶需求時,數位化的布局顯得尤為重要。AI 技術不僅有助於提升運營效率,還能加強決策的準確性與靈活性,為企業的未來發展提供強大支撐。

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>AI 智能搜尋解決方案:智慧政府應用趨勢報告

下載報告AI 智能搜尋解決方案:智慧政府應用趨勢報告

AI 智能搜尋解決方案:智慧政府應用趨勢報告

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點,而本報告將為各位說明生成式 AI 於智慧政府之應用趨勢,並以實際公部門單位導入案例展示智慧治理的落地應用。

報告亮點

Part 1. 生成式 AI 於智慧政府之應用趨勢
Part 2. 意藍 AI Search for KM 服務優勢
Part 3. 政府單位導入應用展示
  • 3-1 智慧城市災防應變數據分析
  • 3-2 智慧循證治理與質詢擬答
  • 3-3 智慧政府民意及民眾陳情資訊分析
Part 4. 意藍 AI Search for KM 服務導入方式
Part 5. 如何申請 AI Search for KM 服務體驗

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點。AI 的導入與應用已勢無法擋,公部門在應對科技挑戰與回應民眾需求時,數位化佈局顯得尤為重要。 而智慧政府的核心目標,就是利用先進科技來提升公共服務的效率與品質,並使行政作業更具透明度與精準度

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>大語言模型的企業應用策略: 營運效率提升的最佳助手

精華文章大語言模型的企業應用策略: 營運效率提升的最佳助手

大語言模型的企業應用策略:
營運效率提升的最佳助手

大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型eLAND GOAT的具體應用。

認識大語言模型

什麼是大語言模型?
大語言模型(Large Language Model,LLM) 是一種基於大量資料訓練而成的深度學習模型,其特色在於模型參數量大、學習訓練資料廣泛,且在模型的訓練過程中,能夠識別及理解大量資料中每個詞句間的上下文關係,以及在語意空間中背後的意義,再根據使用者的提問或指令(Prompt),提供符合邏輯的自然語言回應。大語言模型的運作邏輯就好比文字接龍遊戲──根據使用者所輸入的詞句,模型會基於已學習、訓練過的資料與上下文,來評估哪些字詞最有可能出現在使用者的輸入之後,並生成相對應的文字回應。

 

大語言模型的核心特點?
綜前所述,大型語言模型的核心特點包含以下幾點:
  1. 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
  2. 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
  3. 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。
不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI杜撰、AI幻覺 (Hallucination)等現象,生成出錯誤甚至不存在的回應。

大語言模型的商業應用可能性

企業的大語言模型應用場域
而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:
  1. 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
  2. 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
  3. 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
 
企業如何善用大語言模型提升營運效率?
那企業究竟又該如何將大語言模型的優勢發揮出來?關鍵在於企業如何對模型下達準確的指令(Prompt)。對大語言模型提問時,語句及用詞要盡可能地具體、包含上下文訊息,才能讓大語言模型提供有效的回應,例如當想了解有關國內知名金融業者新光金控的相關資訊時,應避免簡化問句為「總資產?」,而是「請問新光金在今年第二季結束時的資產總額是多少?」,通過更精確的提問,大語言模型能提供更完整的回應。 除了應避免模糊不清的提問內容,提問的技巧也同樣重要,使用者應逐步引導模型進行推理,如欲詢問「新光金在大陸投資有賺錢嗎?」,可先調整提問為「請問新光金在大陸的投資項目為何?」,根據模型的回應,再進一步提問「投資損益為多少?」;藉由調整指令,讓模型能夠不斷學習並一次性回答多個相關問題,從而提升營運效率。

 

企業導入大語言模型的關鍵要素​
隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:
  1. 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
  2. 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
  3. 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調(fine-tune)。

意藍於大語言模型的應用

意藍深知大語言模型對企業營運的重要性與無限可能性,然而因目前主流的大語言模型多是使用英文語料進行訓練,中文語料的佔比相對較低,大部分資料又都是以簡體中文為主,與繁體、台灣所慣用的用字遣詞有一定差距。意藍挑選出台灣常用的語料,在兼顧適法性及合理使用的條件下,整理出AI的學習材料,開發出台灣本土的大語言模型eLAND GOAT,目標讓大語言模型可以更加在地化,並兼顧效能及成本之考量,符合企業特定目的用途。

而意藍在發展出的台灣本土在地化大語言模型eLAND GOAT後,也將其運用在企業知識管理領域中,推出新一代生成式AI知識管理系統-AI Search for KM,不僅提供使用者可以以自然語言的形式進行問答,還結合檢索增強生成(Retrieval-Augmented Generation, RAG)技術,能夠有效地找出精準且相關的內容,藉此提高大語言模型在生成內容的準確性和可靠性,並能夠在每次回應時附上參考內容出處以供驗證,有效避免AI幻覺的可能性。

除此之外,AI Search for KM還可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,並且可選擇在雲端、地端或混合部署大語言模型,免除機敏資訊外洩的疑慮的同時,也能快速的從大量的檔案文件中找出所需內容,大幅縮減企業在知識內化的時間成本與負擔,使其能夠更有效地管理和運用知識資源、提升營運效率。

想進一步了解更多意藍AI技術嗎?

Copyright eLAND Information Co., Ltd.