精華文章掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

掌握檢索增強生成技術,強化企業應用AI的價值:
意藍在RAG的應用與展望

AI技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討RAG檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰

生成式AI在生成內容時,可能會出現杜撰答案或是答非所問等AI幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:

  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但RAG檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。

除了具備以上優勢外,一個好的RAG檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:

  1. 無檢索結果時的回覆

    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。

  2. 生成回覆內容的實用性

    檢索增強生成需確保生成之內容不僅與檢索到的知識相關,且還需具備流暢性、準確性及實用性。

  3. 效率和擴展性

    隨著知識庫不斷擴大,檢索增強生成需維持檢索和生成過程的效率與精準度。

  4. 實際應用彈性

    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。

RAG檢索增強生成的應用場景

RAG檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:

  1. 問答系統

    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG檢索增強生成能提供更精準及可靠的解答。

  2. 智能對話系統

    對話系統通常需結合大量知識來回答使用者的問題,RAG檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。

  3. 知識檢索及擴充

    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。

  4. 知識管理

    RAG檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。

RAG檢索增強生成的應用實例
而RAG檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:
  1. 輿情分析
    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容做為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。
  2. 財經分析
    在金融領域,RAG檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。
總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合RAG檢索增強生成的發展優勢

RAG檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為RAG檢索增強生成出色與否的重要因素。

而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的RAG檢索增強生成服務體驗。

此外,擁有RAG檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了RAG檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。

意藍於檢索增強生成的應用

而意藍資訊在RAG檢索增強生成主要有以下應用:

  1. 訓練大語言模型

    意藍自行研發並訓練了大語言模型eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強RAG檢索增強生成中對於參考相關資訊的摘要及回答的能力。

  2. AI Search for KM新一代生成式AI知識管理系統

    我們將RAG檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代生成式AI知識管理解決方案,提供使用者更高效、智能的知識搜尋與問答服務體驗。

  3. AI輿情應變顧問

    將RAG檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供AI應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。

意藍 AI 技術的未來展望
我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的RAG檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過RAG檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過AI技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

想進一步了解更多意藍AI技術嗎?

Copyright eLAND Information Co., Ltd.