AI Search 電子報|AI 企業應用焦點
AI Search 電子報:洞悉台灣企業 AI 落地真實力
在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。
意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。
這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。
意藍資訊總經理 楊立偉 博士
Vol.02 本期 AI 企業應用焦點報亮點
企業導入大語言模型,該從任務、流程還是模型本身開始?
大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型 eLAND GOAT 的具體應用。
認識大語言模型
什麼是大語言模型?
大語言模型的核心特點?
綜前所述,大型語言模型的核心特點包含以下幾點:
- 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
- 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
- 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。
不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI 杜撰、AI 幻覺 (Hallucination) 等現象,生成出錯誤甚至不存在的回應。
大語言模型的商業應用可能性
企業的大語言模型應用場域
而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:
- 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
- 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
- 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
企業如何善用大語言模型提升營運效率?
企業導入大語言模型的關鍵要素
隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:
- 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
- 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
- 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調 (fine-tune)。
意藍於大語言模型的應用
政府單位想提升行政效率?AI 可以這樣發揮效用
隨著數位化時代的加速發展,政府組織與各行各業都同樣面臨著數位轉型的重要轉折點;對於公部門而言,AI 的導入與應用不僅能夠提升作業效率,更能有效加強公共服務品質、協助應對日益複雜的科技挑戰。而隨著政府內部資料量急劇增加,其對於升級知識管理應用的需求也日益增強,如何引入合適的管理工具、創造知識的最大價值,已成為提升行政效能、實現循證治理智慧化的核心課題。
知識管理對政府單位的重要性
為什麼政府單位需要知識管理?
-
提升行政效率
透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。 -
改善決策品質
面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。 -
增強政府公信力
透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。
政府單位的知識管理需求
-
提升資料透明度的同時,兼顧公眾隱私與敏感資料保護
政府部門需要在推動資訊公開與透明的同時,妥善保護公民的隱私及敏感資料,防止未經授權的資料洩漏或濫用,因此用以輔助之知識管理工具不僅需能有效整合資訊,還需具備完善的存取控制機制,以確保資料安全。 -
長時間保存文件和數據,滿足稽核和法律合規需求
政府部門的文件和數據保存期通常較企業更長,因涉及的資料需滿足各種法律、稽核及合規要求,如政策文件、預算報告或公共安全數據等資料,需長期保存並於必要時進行查閱、追溯。 -
業務範疇廣泛,資料量龐大且多樣性高
政府內部通常由多個部門組成,且各單位的業務範疇不同,涵蓋政策規劃、業務執行、管理督導、勾稽核實等多元領域;各部門間的數據格式、常用檔案形式與管理流程可能存在差異,多樣的需求使得統一管理的難度也有所提升。
政府單位知識管理升級解方 ── 新一代 GenAI 知識管理工作平台
針對以上政府單位對於知識管理的需求,意藍的新一代 GenAI 知識管理工作平台便是理想的解方,其亮點特色如下:
支援多種常用檔案格式
包含 Office、PDF 、CSV 等等,不需額外花費太多心力進行轉檔處理,可應對政府內部多樣化數據格式的需求,有效解決跨部門整合困難。
具備檔案權限劃分機制
確保只有授權人員能夠存取、檢視特定檔案,降低機密資料洩露風險,滿足政府單位對敏感資料保護的嚴苛要求,並為跨部門合作提供安全的知識共享環境。
提供彈性的部署方式
政府單位可根據自身需求,選擇雲端平台服務或導入地端服務,也可以針對不同的任務,自由切換 OpenAI GPT 系列、Meta Llama 系列、 國科會TAIDE 模型、或者意藍經由大量本地語料調校而成的 eLAND GOAT 等多種大語言模型,滿足政府對多樣化應用場景的處理需求,同時提升系統效能,符合成本效益。
支援語意全文檢索
無需進行額外的資訊建立、分類或關鍵字標記,系統便能對檔案進行全範圍檢索,包含標題、內文、作者、建檔時間等資訊皆在搜尋範圍內,解決了龐大資料量下的搜尋困難。
支援易於使用的對話問答
使用者可以自然語言對文件知識點提問,系統會根據問題與相關參考資料,回傳彙整後的口語化回覆,讓非技術人員與高層主管能以直覺方式獲取知識,提升整體操作便利性與工作效率。
導入生成式 AI 知識管理系統的長遠影響
生成式 AI 知識管理系統的導入,不僅能有效為政府單位解決跨部門協作與資料整合的挑戰、提升行政效率與決策品質,更能助力其持續優化知識的流通與應用模式,逐步實踐智能化治理與決策,為數位政府與智慧城市的長遠發展奠定堅實基礎。

亞洲指標 AI 造浪展
「WAVE 2025(World AI Vision Exhibition)」
意藍將於7/31(四)-8/2(六)參展,攤位編號 B1709
現場將分享我們在 AI 應用上的實務經驗,歡迎有興趣的你一起來交流!