不只是懂指令的AI!
探索AI Agent 如何改寫決策流程與工作模式
前2年,企業導入AI主要用來回應問題或加快資訊處理速度。但自今年起,企業更期待AI能主動思考、完成多步驟任務,這也讓「AI Agent(AI代理)」成為新一代AI應用的核心焦點。不同於先前只能被動執行指令的AI,AI Agent具備自主感知、決策與行動能力,能像一位可靠的虛擬助理,協助你完成多步驟任務、主動分析資訊,甚至隨著使用次數越多越聰明。本文將帶你全面認識AI Agent的概念、運作流程與實際應用價值。
什麼是AI Agent(AI代理)?
AI Agent 定義 / 基本概念
AI Agent,是一種具備自主決策與行動能力的人工智慧系統。與傳統AI需要明確指令才能運作不同,AI Agent不僅能理解任務本身,更能推敲背後的目標、從環境中感知資訊,並根據累積的經驗做出最佳決策;簡單來說,它不只是「能做」,而是「知道為何做、該怎麼做、接下來該做什麼」。AI Agent通常具備以下四大能力:
- 目標導向(Goal-oriented):可以根據使用者指定的目標,自行規劃任務執行流程。
- 感知能力(Perception):能自外部環境或使用者互動中,擷取關鍵資訊。
- 記憶與學習(Memory & Learning):擁有記憶機制,可學習並累積過去的經驗,進一步優化未來表現。
- 自主行動(Autonomous Action):能主動採取行動,如呼叫API、使用工具、完成多步任務等。
AI Agent 與一般生成式AI的差異
一般的生成式AI多半仰賴輸入指令來完成特定任務,例如當使用者輸入問題時,AI便根據資料庫回傳答案。而AI Agent則更進一步強調「任務導向」與「自主規劃」,它不僅聽得懂指令,更能主動思考「要怎麼完成這項任務最有效率」。
舉例來說,如果你希望AI幫你撰寫一份市場報告,一般的 AI應用能基於所學習過的知識來回應問題;而AI Agent則會主動搜尋多個資料來源、整合內容、過濾重複資訊,甚至回顧以往你提供的文字風格偏好,自動調整格式與語氣,自主性和靈活性大幅提升,真正成為一位可靠的虛擬助理
AI Agent工作流程解析
隨著AI Agent技術成熟,其應用場景已從簡單的聊天對話,逐漸延伸到多步驟、跨系統的企業任務處理。以下列舉5個高潛力應用場域:
- 客戶服務:不只是回覆問答,AI Agent更能記住過往對話脈絡、主動追蹤處理進度,甚至呼叫內部CRM系統查詢資訊。
- 推薦系統:透過AI Agent,電商零售平台可根據使用者站內行為與搜尋內容,主動推薦合適商品,並整合庫存、優惠與物流資訊,提升購物體驗與下單意願。
- 法務工作:AI Agent能支援提供案件摘要、撰寫法律文件草案、查找相關判例等任務,提升法務工作效率與準確性。
- 金融投資:即時分析市場資訊、監控資產波動,並根據個人投資偏好,提出個人化的理財建議,或執行條件式自動交易。
- 輿情分析與策略規劃:AI Agent 能接收開放式提問,自動檢索最新網路聲量趨勢、熱門關鍵詞等資料,生成結論或建議,協助企業快速掌握輿情風向與行銷重點。
綜上所述,AI Agent 的出現,象徵著企業AI應用邁入新階段,從被動使用工具,到擁有一位能主動協助任務的智慧虛擬助理。在生成式 AI 已成標配的當下,具備任務理解與自主執行能力的 AI Agent,正成為企業深化數位轉型的關鍵,透過減少重複性工作、加快決策流程、優化資源配置,AI Agent 能有效提升整體營運效能,為企業打造更高效、智慧的營運模式。