AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

AI 重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

近年電信詐欺逐漸走向組織化與科技化,詐騙集團除利用社群平台、假投資網站進行詐騙,也可能透過 AI 技術製作換臉、變聲等內容,使身分辨識與情資研判難度大幅提升。面對愈來愈複雜的犯罪模式,相關偵查單位接收到的資料量也隨之倍增,包含金融交易紀錄、通訊內容等分散於多個資料庫和不同格式文件中的資訊,調查人員往往要投入大量時間比對和整理,才能逐步釐清人物、帳戶、電話與金流的關聯脈絡。

偵查單位現行作業流程面臨的挑戰

在科技化浪潮下,犯罪手法不斷演變,偵查實務中所需處理的資料量與複雜度亦隨之增加。偵查單位的日常研析工作不僅仰賴多來源資訊,更必須在有限時間內整合破碎線索、重建金流與人物關聯脈絡。以下是偵查單位在作業中面臨的挑戰:
  1. 資料量龐大且複雜性高:偵查單位每天要處理的資料來源多元,包括民眾舉報、金融交易資料、新聞報導、社群訊息等。由於資料的格式各不相同,內容範疇又橫跨廣泛領域,使得前期研判工作負擔大幅增加。
  2. 案件脈絡難以快速掌握:當詐騙集團以組織化方式運作,各成員僅負責詐騙流程中的其中一個環節,這類分工模式便會導致案件線索散落於不同文件中。因此,調查人員在偵查辦案時,需花費大量時間比對、整理與交叉驗證,才能看出人物間的關聯、資金流向或上下游共犯結構,並進一步拼湊出案件全貌。

導入生成式 AI 解決方案為偵查單位帶來哪些效益

為解決上述痛點,意藍資訊協助偵查單位建置並導入「電信詐欺防制 AI 分析平臺」。本系統以檢索增強生成(RAG)架構為核心,整合生成式 AI、自然語言處理(NLP)、大型語言模型(LLM)及關聯分析等技術,並具備Agent多步驟執行任務的能力,在接受到指令後能自動跨來源檢索、比對並統整資料,重塑從資料彙整到案件研析的流程。整體系統可分為三大核心模組:自動摘要、關聯分析以及圖表生成,協助調查人員更快掌握案件全貌。 在此核心架構上,本案完成以下四大項重點建置:
  1. AI自動彙整與摘要可信結果:在偵辦電信詐欺案件時,調查人員常需要在短時間內了解人物、帳戶、交易紀錄與通訊內容等核心資訊。在檢索增強生成(RAG)架構與跨來源檢索能力的基礎下,調查人員提供人物姓名、公司或行號等與案件相關的線索資訊後,系統便會自動整合多來源資料與文件內容,進行語意分析與重點萃取,進而生成包含商工登記資料、戶籍資料、裁判書等資訊的摘要結果,並於回覆中提供資料的參考來源,有效縮短跨單位比對與人工查核所需時間。
  2. 關聯分析模組:利用 NLP(自然語言處理)和 LLM(大型語言模型)在多筆資料中找出人物、公司、地點、電話、帳戶等資料之間的關聯性,分析案件的交易關係或資金流向,並於生成的關聯結果中標示對應的文件與段落。如此一來,調查人員不僅能清楚掌握案件全貌與發展脈絡,也能夠依案件需求回溯原始內容,有助於未來查證、複審與移送書撰寫等作業流程。
  3. 圖表生成模組:藉由前兩個模組找出核心資訊與關聯性後,系統會將人物關係、資金流向等分析結果轉成視覺化圖表,讓案件脈絡一目了然。透過導入此模組,當調查人員面對人物關係與金流複雜的案件時,不僅能避免人工判讀造成的錯誤,若案件規模擴大,也能以現有架構研判新增之資料,節省時間成本。

透過導入「電信詐欺防制 AI 分析平臺」,偵查單位得以用更系統化的方式整合多來源資料,快速掌握關鍵線索與案件脈絡,使原先需大量依賴人工比對的研析工作,能在更短時間內完成,進而提升研析效率與判斷精準度。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

用 AI Agent 整合數據,快速選出最佳影響力合作對象

在行銷策略中,挑選合適的 KOL 已成為重要且關鍵的決策,因為合作對象不僅影響品牌曝光,也牽動後續成效。然而若缺乏 AI 協助,行銷團隊往往需要自行到 IG、YouTube、Dcard、PTT 等多個平台搜尋資料,且不同團隊或成員之間的判斷標準(如按讚數、留言數、內容調性、受眾輪廓等)也可能不一致,使得挑選 KOL 成為耗時且主觀性高的作業。

OpView AI Agent 的價值不僅是「能回答問題」,而是能替使用者跑流程、整合資料並生成比較報告,讓行銷人員能用一致、可量化的方式進行決策,有效降低人工比對的時間。

▲ OpView AI Agent 應用服務

使用者可透過圖示化問答介面,自行輸入問題,或選擇系統提供的情境按鈕,如「KOL 分析」、「主題趨勢」、「廣告投放」等。AI Agent 會根據不同情境調用最合適的分析模組,串接站台資料生成重點摘要與建議,幫助使用者快速掌握資訊核心、輿情變化與行銷機會。

AI Agent 在醫美產業的應用:以數據輔助 KOL 決策

以醫美產業為例,品牌方在挑選 KOL 時,通常需要同時檢視多項指標,例如過去在相關主題上的發文內容、平均互動表現、受眾輪廓,以及是否曾出現負面回饋或爭議紀錄。過往這些資訊往往需要行銷人員分別在不同平台上手動搜尋與比對,耗時又不易掌握全貌。

但使用 AI Agent 時,行銷人員只需輸入關鍵條件(主題、平台、期間),系統便會:

  • 抓取跨平台資料(Dcard、IG、PTT 等)
  • 計算聲量與互動指標(平均按讚、留言、Keyword 呈現等)
  • 建立候選清單
  • 產出推薦理由與比較依據

這讓行銷團隊可以一次看到「多位 KOL 的比較表格」,快速理解誰最適合合作。

此外,AI Agent 會同時提供推薦依據,例如:相關主題之平均貼文互動、討論熱點與常見問題,以及內容調性是否與品牌相符,讓使用者能以「資料為基礎」做判斷,而非僅依賴過往經驗。

▲ OpView AI Agent 問答示意圖

操作時,使用者可以選擇自行發問或透過系統預設按鈕進行問答。上圖是以自行發問的方式,請 AI Agent 分別提供不同社群網站各3位 KOL 作為參考清單,並根據判斷標準各推薦最合適的合作人選。透過此種方式,品牌便可以一次綜覽不同人選的合作效益分析,加速行銷決策效率。

金融情資零散難掌握?帶你了解金融機構如何用 AI 整合情報

金融機構在投資研究與風險控管中,最常遇到的挑戰是「資料分散、資訊量大、判讀時間長」。在市場變動加快的情況下,決策速度往往受到資訊處理效率限制。
對此,意藍資訊推出以 AI Search 為核心的三大解決方案,包含「情報分析」、「智慧客服」與「輔助作業」,透過完整的 AI 落地應用架構,協助金融機構提升作業順暢度與決策品質。
在本期電子報中,我們將聚焦於「情報分析服務」的應用,藉由案例說明 AI Search 解決方案在投資與風控作業流程中扮演的角色及其價值。

在金融機構內部,投資情報研究與風控單位的第一線人員於日常作業中,經常面臨以下四大難題:

  1. 資料來源分散,變動頻率不一
  2. 資訊龐雜,人工統整效率低
  3. 文件內容複雜,人工判讀耗時
  4. 難依個人業務需求,進行客製化彙整與應用

意藍整合 AI Search、語意分析模型與多來源資料庫,協助逐一解決上述難題,打造可同時支援投資研究與風控作業的智慧情報平台。平台系統整合公司資本結構、財務報表、即時公告、新聞、法規等關鍵資訊,單位人員僅需於單一平台內操作,即可進行跨來源資料的檢索與分析,獲取一致且即時的資訊。

首先,在投資情報服務應用中,平台內彙整企業基本資訊、財務報表與社群輿情等多來源資料,自動生成視覺化圖表,協助投資人與分析師快速掌握企業經營狀況與市場波動,進一步判斷新聞對公司股價的正負面影響與幅度。

▲智慧情報平台系統「投資情報」應用示意圖

而在風險控管方面,平台則會在多來源資料中自動偵測可能影響企業的異常訊號,並透過語意模型比對關鍵變化,生成分析與預警訊息,讓風險管控由過往的「被動查詢」轉為「主動偵測」,提供單位更即時、更精準的分析結果,提升面對事件的預警速度與應對效率。

▲智慧情報平台系統「風控情報」應用示意圖

透過整合多來源資料並以語意模型協助解讀,AI Search 讓金融作業流程更接近「即時決策」。資料取得與分析速度的改變,也逐漸重塑金融單位的工作方式。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 如何思考?從大語言模型看懂它的「腦內運作」

生成式 AI 是人工智慧(AI)技術的一個重要類型,而大型語言模型(Large Language Model, LLM)則是目前生成式 AI 在文字生成領域的核心技術基礎。以下將以精簡的內容,帶讀者快速了解三者的關係與運作方式。

人工智慧技術概述與生成式 AI 的定位

人工智慧(AI)包含多種模型與學習方法,各自負責不同任務。常見的 AI 學習方式包含:

  1. 監督式學習:給模型範例和答案,模型從中學到具鑑別力的特徵,進行分類或預測。
  2. 非監督式學習:僅提供資料,不給答案,讓模型自行找出規律與特徵。
  3. 增強式學習:不提供資料,而是給予「目標」與「獎勵規則」,讓模型透過試錯找到最佳策略。

生成式 AI 作為 AI 其中一種類型,通常使用大量未標註資料,讓模型學習語言或內容的分佈與規律,進而生成新的文字、圖像或音訊,不僅能分類或預測,還能解決問題與執行多樣任務。

生成式 AI 的語言生成技術基礎:大型語言模型(LLM)

在文字生成領域,生成式 AI 的核心技術之一是大型語言模型(LLM)。
LLM 會從大量文本資料中,自行學習「詞與詞之間」「句與句之間」的關聯與語言規律,並在收到使用者指令後,生成符合語意與邏輯的回應。
可以把 LLM 想像成「文字接龍」:

  1. 使用者先提供一段問題或內容(上下文)。
  2. 模型依據訓練資料學到的語言規律,預測「下一個最可能出現的字詞」。
  3. 一字一句生成,最後串成完整且連貫的回答。

相較於過去較為專職的自然語言處理(NLP)模型,大型語言模型具備三個主要優勢:

  1. 上下文理解能力更強:生成內容更有邏輯、連貫度更高。
  2. 多任務通用性:不需為每個任務打造不同模型,一個模型即可應付多種語言任務。
  3. 大量資料訓練帶來的知識廣度:掌握更多語法、語意與世界知識,提高回覆品質。

這些能力使 LLM 在許多應用中表現突出,例如:智能客服、文案創作、資料解讀與摘要等,都能藉由 LLM 達成自動化並提升效率。

生成式 AI 的挑戰:可信度與「幻覺」問題

儘管 LLM 能產生高品質內容,但在語言模型的統計運作特性下,仍可能出現「看似合理、實則錯誤」的回答,也就是常說的模型幻覺(Hallucination)。
原因在於:

  • 當模型遇到訓練資料中未出現或不確定的資訊時
  • 會依照語言規律「推測」答案
  • 而非查證或真正理解內容

因此在回答專業領域問題時,模型可能基於語料經驗生成答案,但缺乏真實的參考來源。

解方:RAG(檢索增強生成)技術

RAG(檢索增強生成)是一種補強大型語言模型回答可信度的架構。

為減少幻覺問題並提升回答可信度,近年興起檢索增強生成(Retrieval-Augmented Generation, RAG)技術,它結合了「資料檢索」與「生成式 AI」的優勢。RAG 的流程如下:

  1. 先向外部資料庫或文件進行檢索,取得相關且可信的內容。
  2. 再由模型依據取得的資料生成回答。

好處包括:

  • 減少憑空捏造的可能性
  • 讓回答更接近真實世界資料
  • 增強內容的可追溯性
  • 更適合企業知識庫、客服、法規查詢等具資訊正確性需求的應用情境

RAG 的概念不僅提升生成式 AI 的實務可靠度,也進一步拓展大型語言模型在產業中的應用範圍。

從人工查核到智慧偵查:AI 如何重塑金流分析效率

近年來,虛擬貨幣與數位資產市場快速發展,相關犯罪樣態日益多元。虛擬貨幣因具去中心化、匿名化與跨境流動性高等特性,使執法單位在偵查過程中面臨更大的挑戰。傳統依賴人工比對與文件查核的作業,不僅耗費大量人力與時間,也難以即時掌握複雜的金流脈絡。為提升偵查效能與準確度,政府機關積極推動數位偵查轉型,透過導入 AI 與大數據分析技術,強化資料運用與決策支援能力,逐步邁向智慧化執法的新階段。

為何偵查作業需導入 AI 技術?

隨著數位資產市場與虛擬貨幣交易蓬勃發展,相關犯罪手法與樣態也呈現多樣化趨勢,跨境交易頻繁、匿名性高且金流分散等,使執法單位面臨前所未有的挑戰。在偵查過程中,相關人員常需以人工從大量錢包地址與交易紀錄等資料中比對可疑關聯,而此種以人工比對與查核為主的偵查方式可能面臨的困難點包括:

  1. 資料分散、難以整合:交易紀錄散落於不同交易所,查找過程不僅費時,更仰賴交易所的主動配合。
  2. 人工查核耗時:偵查人員需自行分析金流紀錄與交易數據,工作量龐大且較難完全避免疏漏。
  3. 缺乏即時分析能力:傳統流程難以即時偵測異常金流或可疑關聯,易錯過最佳追查時機。
  4. 資訊視覺化不足:偵查人員需自行繪製幣流分析圖以呈現金流脈絡,難以快速掌握全局。

面對龐雜金流結構與快速變動資訊,導入 AI 與資料分析技術可協助自動化整合多源資料、提升金流比對與異常偵測能力,強化決策支援與案件研析成效。

AI 金流偵查系統建置成效

為回應上述挑戰,政府機關的相關單位近年積極導入 AI 技術,建置專屬的虛擬貨幣金流偵查系統,實現資料整合與分析自動化。意藍資訊作為台灣代表性的智能數據廠商,協助執行虛擬貨幣金流偵查系統專案,以下為技術基礎與應用效益:

  • 技術基礎與平台特性 
    系統以「AI Search for KM 新一代知識搜尋與知識問答系統及工作平台」為基礎,以 RAG 架構為核心,並整合搜尋引擎、向量資料庫、語意分析及大型語言模型,可針對特定領域資料進行理解與訓練,支援高精度的知識檢索與智能問答。且平台問答之回覆內容均可追溯來源,確保資料可靠性;同時,亦支援地端運行與權限控管,可以有效避免洩漏機敏資訊。
     
    在此基礎上,系統整合公開虛擬貨幣金流紀錄、內部案件資料及相關法律監理文件等,經結構化處理後形成資料庫,確保可依偵查任務需求調用對應資訊,最終建置出可於地端安全運行的「虛擬貨幣金流偵查系統」。
     
  • 核心功能與效益
    1. 核心功能:金流查詢
      採用 NL2SQL 技術,使用者可透過自然語言查詢交易紀錄,如詢問「這筆交易資金流向哪錢包?」系統便會自動轉換為查詢指令並回傳結果,並以視覺化方式呈現資金流向,大幅降低查詢門檻。此功能能夠節省資料比對與分析成本,縮短案件初步調查時間,提升分析準確性。 
    2. 核心功能二:偵查報告生成
      系統可根據過往相關之偵查與法律文件,自動生成偵查報內容並提供偵查建議,減輕人工彙整負擔,確保報告結構與語意一致,提升案件報告品質與流程效率 
    3. 核心功能三:偵查報告真偽驗證
      輔助驗證偵查報告真實性,根據實際數據與推論規則檢核報告內容,標示潛在錯誤或矛盾之處,強化報告可信度與司法採信力。

整體而言,透過此 AI 金流偵查系統的導入,偵查人員可直接以自然語言快速完成資料查詢、金流分析與報告生成,讓偵查流程更即時、精準、安全,顯著提升執法作業在效率、準確度與資訊安全三方面的表現,為虛擬貨幣相關的犯罪偵查提供全方位的支持。未來,此技術亦可延伸應用於其他犯罪樣態與偵查領域,推動執法作業邁向全面智慧化。 

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

AI Search 電子報 | vol.09 懂語言、懂決策,AI 如何重塑企業營運思維

AI Search 電子報 | vol.09 懂語言、懂決策,AI 如何重塑企業營運思維

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

AI 為什麼越來越懂你?揭開自然語言處理的進化關鍵

自然語言處理商業化應用

什麼是自然語言處理?

當你發現客服機器人能理解你的問題、甚至預測你的需求,背後的關鍵技術正是自然語言處理。

自然語言處理(Natural Language Processing,NLP)是人工智慧的一個重要分支,目的是讓電腦能夠「聽得懂」和「說得出」人類語言。不僅能理解語意,更能幫助企業洞察情緒脈絡,讓輿情分析不再只是冷冰冰的數字。

在自然語言處理的發展中,常見的技術包含:

  1. 語意分析:理解文句中的意圖、情感,例如意藍自主研發的 DeepNLP 深度語意分析模組,可進行情緒分析、文本摘要、屬性詞分析等。
  2. 語音辨識:將語音轉換成對應的文字內容,例如 Google 的語音輸入功能。
  3. 文本生成:生成自然且合乎語法的文字內容,例如 ChatGPT 的文字生成功能。
  4. 機器翻譯:將文本從一種語言轉換成另一種語言,例如 Google 翻譯。
意藍 DeepNLP 技術服務內容

意藍的 DeepNLP 語意分析模組是國內最早投入、商業化應用成熟的自然語言處理技術產品,能以深度學習技術解析非結構化文本,進行情緒與語意分析。

而 DeepNLP 技術也被應用在意藍的產品當中,其中 OpView 雲端資料分析服務會針對大量的輿情資料進行情緒分析,來理解文本中的情感,辨別出文本表達的情感是正面、負面或是中立,幫助企業了解輿情對產品、品牌或事件的態度,有助於調整行銷策略和危機應對。除此之外,透過 DeepNLP 技術還可以抓取文本中的重點資訊,進而掌握公眾關注的重點面向或事件,以制定相應的決策和宣傳方案。透過自動摘要則可以從文本中提取出重要的句子或段落,生成簡潔的摘要,有助於企業迅速理解和分析大量的文本資訊。 

 

大語言模型的興起與優勢

大語言模型的核心特點

隨著自然語言處理技術的成熟,下一階段的突破來自『大語言模型』的興起。大語言模型(Large Language Models,LLM) 是基於自然語言處理所發展的技術,能夠進一步理解自然語言文本,並生成各式各樣的內容,目前國際上較為知名的大語言模型包含

  1. OpenAI 的 GPT 系列
  2. Meta 的 LLaMa 系列
  3. Google 的 Gemini
  4. Gemma 系列

為推動 AI 在地化發展,國內也積極研發本土大語言模型,如意藍所發展之 eLAND GOAT。而大語言模型則主要有以下幾個核心特點:

  1. 大量的數據訓練:讓模型從大量文本數據學習語言知識。
  2. 上下文理解:能夠理解和生成上下文相關的文本,提供流暢的回覆。
  3. 應用場景廣:有別於過往的模型多只在特定領域表現良好,大語言模型可以用於多種自然語言處理任務上,例如:從自動客服到文件摘要,皆能展現強大語意理解力。
大語言模型對自然語言處理的強化

大語言模型的發展推動了自然語言處理技術的進步,透過持續的訓練模型,可以更強化自然語言處理的效果,包含:

  1. 語意理解能力更佳:能夠更準確地理解文本中的語意,從而提高自然語言處理系統的性能。
  2. 文本生成能力更強:能夠生成更自然、連貫甚至更貼合使用者需求的文本,在聊天機器人和文本生成工具等方面都有很大的應用潛力。
  3. 多語言處理能力更好:具備多語言處理能力,可以在多種語言之間,進行翻譯和語意的理解。
 

結合搜尋技術、自然語言處理與大語言模型,提升產品效果與體驗

近年生成式 AI 的出現,讓自然語言處理技術的應用範圍更加擴大。意藍將 DeepNLP 與大語言模型結合,並整合自家搜尋技術,讓多項產品的分析與互動體驗更及時、智慧。

  1. OpView:
    — 運用大語言模型的生成能力,提供 AI 摘要功能,讓使用者在進行市場輿情觀測與分析時,可以跳脫過往繁瑣的工作流程(例如:在框定議題範圍後,需人工逐篇檢視、吸收消化再整理成重點等耗時作業),更快速有效率地掌握議題與貼文的討論重點。
    — OpView 也結合數據優勢及 AI 理解能力,推出「AI Agent」,使用者以自然語句提問後,AI 會自動解析意圖、整合相關分析模組,串接站台資料進行處理,並生成重點摘要與建議,應用面向涵蓋 PR 危機、廣告投放、KOL 分析及行銷靈感等,協助使用者快速掌握所需資訊與重點內容。
  2. AI Search for KM:
    — 核心技術:結合 DeepNLP 技術、大語言模型以及搜尋引擎技術,打造企業知識搜尋與問答服務
    — 使用方式:使用者可以自然語言提問,系統會自動從文件資料找出最相關的內容
    — 回覆特色:由意藍開發的 eLAND GOAT 大語言模型彙整成可讀性高的答案,並附上資料來源供驗證,提升知識可信度與可追溯性
    — 效益:協助使用者快速取得精準答案,減少知識整理的時間成本

意藍結合 DeepNLP 技術與大語言模型,讓企業能更快速掌握市場輿情重點、整理知識內容,減少人工整理的時間與成本,進一步提升資料分析與決策的效率。

AI 導入供應鏈,優化決策與風險管理

延續上期電子報,我們介紹了由四大功能模組組成的 AI 智能決策循環,如何透過「整合、推論、生成、檢核」的流程,打造可持續運作且不斷優化的知識系統,協助組織有效解決管理與營運挑戰,並展示了金融業的導入實例。本期則將以食品製造業為例,解析 AI Agent 如何優化供應鏈管理與風險防範能力。

在製造業領域中,特別是食品加工與銷售這類高度重視供應鏈管理與品質控管的產業,AI 模型的導入已展現實質應用價值。透過一套完整的智能循環,企業不僅能更有效預防風險,也能提升日常營運效率與應變速度。

▲ 食品製造業 x AI 導入實務 流程圖

首先,在「動態監控與情報整合」階段,AI 可自動追蹤原料來源與供應商資訊,並即時監測國內外食品安全相關新聞與公告。一旦偵測到可能影響生產的事件,系統可主動提醒相關單位,協助企業及早介入,防止問題擴大;接著,「數據推論與關聯分析」模組能在潛在風險事件發生時,從歷史供應紀錄、批號與出貨去向等多源資料中,推論出可能受影響的產品範圍,協助企業更快做出召回或調整決策。

「內容生成與專業論述」部分,AI 可依據標準化格式,自動產生稽核報告、食品安全事件通報或供應商檢討報告,減少人工彙整的時間,讓第一線人員能專注於後續處理與溝通;最後,「品質維持與異常監測」模組則可跨系統比對出貨數與倉儲紀錄,檢查產品標籤與追蹤資訊是否一致,並從歷次稽核報告中學習潛在異常模式,再回饋至前端監控,形成持續優化的品質管理循環。

綜上所述,透過四大模組,包含情報蒐集、數據驗證、文件撰寫到品質控管,食品製造業透過使用 AI 架構,在供應鏈管理與風險控管上更為敏捷與精準,進一步提升企業的市場競爭力。不僅縮短決策時間,也強化了供應鏈透明度與品牌信任。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

經理人 x 中華民國對外貿易協會【中高階主管 AI 企業策略課程】
經理人 x 中華民國對外貿易協會
【AI 決策領導力課程】

意藍資訊總經理 楊立偉博士,率領資深商業分析師團隊,
分享從數據管理到生成式 AI 的實務應用,
助力企業掌握策略決策力與營運洞察。
立即前往觀看!

AI Search 電子報 | vol.02 導入不是目的,企業該如何部署大語言模型?

AI Search 電子報 | vol.02 導入不是目的,企業該如何部署大語言模型?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

企業導入大語言模型,該從任務、流程還是模型本身開始?

大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型 eLAND GOAT 的具體應用。

認識大語言模型

什麼是大語言模型?
大語言模型(Large Language Model,LLM) 是一種基於大量資料訓練而成的深度學習模型,其特色在於模型參數量大、學習訓練資料廣泛,且在模型的訓練過程中,能夠識別及理解大量資料中每個詞句間的上下文關係,以及在語意空間中背後的意義,再根據使用者的提問或指令(Prompt),提供符合邏輯的自然語言回應。大語言模型的運作邏輯就好比文字接龍遊戲──根據使用者所輸入的詞句,模型會基於已學習、訓練過的資料與上下文,來評估哪些字詞最有可能出現在使用者的輸入之後,並生成相對應的文字回應。  
大語言模型的核心特點?

綜前所述,大型語言模型的核心特點包含以下幾點:

  1. 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
  2. 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
  3. 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。

不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI 杜撰、AI 幻覺 (Hallucination) 等現象,生成出錯誤甚至不存在的回應。

大語言模型的商業應用可能性

企業的大語言模型應用場域

而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:

  1. 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
  2. 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
  3. 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
企業如何善用大語言模型提升營運效率?
那企業究竟又該如何將大語言模型的優勢發揮出來?關鍵在於企業如何對模型下達準確的指令(Prompt)。對大語言模型提問時,語句及用詞要盡可能地具體、包含上下文訊息,才能讓大語言模型提供有效的回應,例如當想了解有關國內知名金融業者新光金控的相關資訊時,應避免簡化問句為「總資產?」,而是「請問新光金在今年第二季結束時的資產總額是多少?」,通過更精確的提問,大語言模型能提供更完整的回應。 除了應避免模糊不清的提問內容,提問的技巧也同樣重要,使用者應逐步引導模型進行推理,如欲詢問「新光金在大陸投資有賺錢嗎?」,可先調整提問為「請問新光金在大陸的投資項目為何?」,根據模型的回應,再進一步提問「投資損益為多少?」;藉由調整指令,讓模型能夠不斷學習並一次性回答多個相關問題,從而提升營運效率。  
企業導入大語言模型的關鍵要素​

隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:

  1. 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
  2. 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
  3. 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調 (fine-tune)。 

意藍於大語言模型的應用

意藍深知大語言模型對企業營運的重要性與無限可能性,然而因目前主流的大語言模型多是使用英文語料進行訓練,中文語料的佔比相對較低,大部分資料又都是以簡體中文為主,與繁體、台灣所慣用的用字遣詞有一定差距。意藍挑選出台灣常用的語料,在兼顧適法性及合理使用的條件下,整理出AI的學習材料,開發出台灣本土的大語言模型 eLAND GOAT,目標讓大語言模型可以更加在地化,並兼顧效能及成本之考量,符合企業特定目的用途。 而意藍在發展出的台灣本土在地化大語言模型 eLAND GOAT 後,也將其運用在企業知識管理領域中,推出新一代 GenAI 知識管理工作平台-AI Search for KM,不僅提供使用者可以以自然語言的形式進行問答,還結合檢索增強生成(Retrieval-Augmented Generation, RAG)技術,能夠有效地找出精準且相關的內容,藉此提高大語言模型在生成內容的準確性和可靠性,並能夠在每次回應時附上參考內容出處以供驗證,有效避免 AI 幻覺的可能性。 除此之外,AI Search for KM 還可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,並且可選擇在雲端、地端或混合部署大語言模型,免除機敏資訊外洩的疑慮的同時,也能快速的從大量的檔案文件中找出所需內容,大幅縮減企業在知識內化的時間成本與負擔,使其能夠更有效地管理和運用知識資源、提升營運效率。

政府單位想提升行政效率?AI 可以這樣發揮效用

隨著數位化時代的加速發展,政府組織與各行各業都同樣面臨著數位轉型的重要轉折點;對於公部門而言,AI 的導入與應用不僅能夠提升作業效率,更能有效加強公共服務品質、協助應對日益複雜的科技挑戰。而隨著政府內部資料量急劇增加,其對於升級知識管理應用的需求也日益增強,如何引入合適的管理工具、創造知識的最大價值,已成為提升行政效能、實現循證治理智慧化的核心課題。

知識管理對政府單位的重要性

為什麼政府單位需要知識管理?
政府單位肩負服務民眾和執行公共政策的重責,其運作效率將直接關係到社會的發展與民眾福祉,而知識管理可透過以下多個面向提升政府效能:
  1. 提升行政效率
    透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。
  2. 改善決策品質
    面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。
  3. 增強政府公信力
    透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。
政府單位的知識管理需求
相較於一般企業,政府單位在知識管理方面具備以下獨特需求──
  1. 提升資料透明度的同時,兼顧公眾隱私與敏感資料保護
    政府部門需要在推動資訊公開與透明的同時,妥善保護公民的隱私及敏感資料,防止未經授權的資料洩漏或濫用,因此用以輔助之知識管理工具不僅需能有效整合資訊,還需具備完善的存取控制機制,以確保資料安全。
  2. 長時間保存文件和數據,滿足稽核和法律合規需求
    政府部門的文件和數據保存期通常較企業更長,因涉及的資料需滿足各種法律、稽核及合規要求,如政策文件、預算報告或公共安全數據等資料,需長期保存並於必要時進行查閱、追溯。
  3. 業務範疇廣泛,資料量龐大且多樣性高
    政府內部通常由多個部門組成,且各單位的業務範疇不同,涵蓋政策規劃、業務執行、管理督導、勾稽核實等多元領域;各部門間的數據格式、常用檔案形式與管理流程可能存在差異,多樣的需求使得統一管理的難度也有所提升。

政府單位知識管理升級解方 ── 新一代 GenAI 知識管理工作平台

針對以上政府單位對於知識管理的需求,意藍的新一代 GenAI 知識管理工作平台便是理想的解方,其亮點特色如下:

  1. 支援多種常用檔案格式

    包含 Office、PDF 、CSV 等等,不需額外花費太多心力進行轉檔處理,可應對政府內部多樣化數據格式的需求,有效解決跨部門整合困難。

  2. 具備檔案權限劃分機制

    確保只有授權人員能夠存取、檢視特定檔案,降低機密資料洩露風險,滿足政府單位對敏感資料保護的嚴苛要求,並為跨部門合作提供安全的知識共享環境。

  3. 提供彈性的部署方式

    政府單位可根據自身需求,選擇雲端平台服務或導入地端服務,也可以針對不同的任務,自由切換 OpenAI GPT 系列、Meta Llama 系列、 國科會TAIDE 模型、或者意藍經由大量本地語料調校而成的 eLAND GOAT 等多種大語言模型,滿足政府對多樣化應用場景的處理需求,同時提升系統效能,符合成本效益。

  4. 支援語意全文檢索

    無需進行額外的資訊建立、分類或關鍵字標記,系統便能對檔案進行全範圍檢索,包含標題、內文、作者、建檔時間等資訊皆在搜尋範圍內,解決了龐大資料量下的搜尋困難。

  5. 支援易於使用的對話問答

    使用者可以自然語言對文件知識點提問,系統會根據問題與相關參考資料,回傳彙整後的口語化回覆,讓非技術人員與高層主管能以直覺方式獲取知識,提升整體操作便利性與工作效率。

導入生成式 AI 知識管理系統的長遠影響

生成式 AI 知識管理系統的導入,不僅能有效為政府單位解決跨部門協作與資料整合的挑戰、提升行政效率與決策品質,更能助力其持續優化知識的流通與應用模式,逐步實踐智能化治理與決策,為數位政府與智慧城市的長遠發展奠定堅實基礎。

WAVE_BN_2
亞洲指標 AI 造浪展
「WAVE 2025(World AI Vision Exhibition)」

意藍將於7/31(四)-8/2(六)參展,攤位編號 B1709
現場將分享我們在 AI 應用上的實務經驗,歡迎有興趣的你一起來交流!

AI Search 電子報 | AI 企業應用焦點

AI Search 電子報 | AI 企業應用焦點

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 不再只是工具,企業該如何有效整合與導入?

本篇報告摘錄意藍《Gen AI 未來視野:年度技術趨勢與革命性應用》研討會精華,剖析生成式 AI 工具及技術發展趨勢外,展示如何透過 AI 加值輿情觀測,協助企業快速掌握市場動態;另外也呈現如何透過多來源資料訓練,打造企業、組織專屬 AI 模型,成為企業決策的智慧推手。

1-1年度 AI 發展趨勢

生成式 AI 應用發展多元 「理解」將成未來發展重點

隨著開源式 AI 生態系崛起,大語言模型將更容易被存取、應用,而過去由科技巨頭全面主導的 AI 技術將出現發展上的分化,各企業自研模型如雨後春筍誕生,帶動整體領域成長,模型百花齊放。目前市場上湧現多種生成、多模態及推理相關的生成式 AI 工具,包括圖片、影片和文字等多種形式的資訊處理,以不同特色獨霸一方,豐富的選擇進一步推動了生成式 AI 技術的應用,讓企業能根據需求找到最適合之工具,為各產業帶來新的可能性。

市面上常見生成式AI工具

▲ 市面上常見生成式 AI 工具 

如 Google 的 Gemini 可同時理解並處理文字以及影像等不同類型的資料;Copilot 則可整合 Bing 與微軟的服務;而深度求索的 DeepSeek 因爲開源架構,使得第三方開發更有優勢。

開源式 AI 三大趨勢

現今的開源式 AI 呈現出三大趨勢,可見得 AI 正快速從實驗室走入日常應用場域。「技術開放」使智慧轉型的技術及經費門檻大幅下降,提升企業和開發者的導入意願,甚至可預期在接下來的1至2年內,各單位都將導入生成式 AI;此外,近年 AI 服務供應商的「普及化」,則讓企業組織能夠選擇與當地服務商合作,獲得更貼近成本效益、資訊安全等需求的解決方案。而隨著技術持續演變,開源模型也呈現「樣態多元」的趨勢,收到使用者提問後,模型會自主收集內外部資料庫,不斷進行內部詰問處理,生成更符合使用者預期的結果,以期更順暢地被應用在各類 AI 工具當中。

1-2 生成式 AI 工具背景技術趨勢

特式化 AI 模型成主流需求 高品質原料及資料合成技術是關鍵

接著從實際導入需求觀察,企業組織大多期待有屬於自己的特式化 AI 模型,以取得根據自身產業、品牌、甚至是部門所量身打造的 AI 生成結果。以美妝產業為例,產品的成分、功效、用語往往具有高度產業特性,然而市面上開源模型的調整彈性有限,在這樣的需求期待下,專屬特式化的模型蓬勃發展,為破解既定印象中需要使用大量資料、耗時費力才能訓練出的 AI 模型,意藍以《OpView 社群口碑資料庫》為基礎,透過大量、高品質、且即時的在地「資料原料」及「資料合成技術」,協助快銷品、各行各業、政府部門等單位高效建立專屬模型。

生成式AI工具

除了特式化能力,AI 模型學習的即時性也備受重視。既有生成式AI遇到來不及學習的新知時易出現幻想情況,而意藍結合搜尋引擎與大語言模型,推出主動式檢索增強生成技術(eLAND Active RAGᵀᴹ),能結合內部資訊和即時性高達15分鐘內的外部資料,進行多回合檢索及生成,以更符合企業即時性需求。

Active RAGTM 運作模式

▲ Active RAGᵀᴹ 運作模式

2-1 OpView X AI:AI 助手打造高效工作流

生成式 AI 賦能 OpView 協助統整海量資料與提供策略建議

觀察生成式 AI 與 RAG 技術實際在企業中的落地應用,在資訊量過載的時代下,AI 也是幫助資訊精煉、加速作業的關鍵。

如果要針對自身企業、品牌進行網路討論狀況監測,人工逐一篩選及總結不僅耗時,還容易因為過量閱讀陷入資訊疲勞,影響分析中立性。而 OpView 的AI 輿情應變顧問、文章探索助理,則能協助企業品牌快速掌握輿情風向。

OpView AI 服務

▲ OpView AI服務

以想快速了解「新光三越氣爆事件」相關新聞為例,便可以使用 AI 輿情應變顧問功能,以日常對話形式進行提問,便能獲得最即時的在地新聞資訊統整,省去人工查找、彙整的時間。甚至能進一步提問不同層面的問題,例如該事件對企業營運、股市、地區經濟、競爭對手與長遠經濟的影響。

AI輿情應變顧問 示意圖

另一方面,社群、討論區等其他來源也是企業及品牌在意的輿情觀測重點,然而大量而零碎的討論歸納起來費力耗時。

透過 eLAND Active RAGᵀᴹ 檢索增強生成技術,能更深度地應用相關內容。如文章探索助理能在使用者所設定的主題範圍中,快速拆解使用者問題並檢視參考資料,接著針對搜索出的資料進行彙整與分析、統計議題討論量,最終提供資訊統整與策略建議。

以「台積電赴美設廠」話題為例,一個月間便累積了超過5萬筆討論,透過對文章探索助理提問,便能從海量資料中以列點式生成重點,迅速了解設廠新聞對台灣整體經濟與股市的影響。

文章探索助理 示意圖

對於需要經常性蒐集、彙整、分析網路情報的專業人員,OpView 的 AI 自動化報表更是得力助手,除了將多種視覺化圖表以報告形式呈現,亦能整理網友討論摘要,並基於報告目的生成分析內容,提供如公關、行銷等不同切角的觀點。

AI自動化報表快速整合網路情報,提供AI分析建議

▲ AI 自動化報表快速整合網路情報,提供 AI 分析建議

2-2  AI Model:企業/組織專屬 AI 模型

提煉客戶專屬 AI 特式化模型 有效提升組織內部資訊流轉效率

在應用場域中,企業組織遇到的問題往往十分複雜,此時 AI Model 整合服務便是以特式化 AI 模型提供專屬解決方案。透過標記企業關注、儲存的數據資料,意藍以自行研發的大語言模型 eLAND GOAT 為基礎,為客戶針對特定領域進行模型訓練,產生專屬客戶的 AI 模型,最終結合包括 OpView 或企業內部系統提供特式化服務。

以政府部門為例,涉及市政議題的話題眾多,並且單一事件經常需協調跨局處處理,易遇到資訊分散、局處分類困難、缺乏結構化處理等問題。AI Model 市政專屬模型不同於以往關鍵字搜索的查詢方式,能夠自動爬取市政新聞,進行分配判斷並推送給相關對象,且判斷準確率高達94%,有效降低人力成本、提升市府內部資訊流轉效率。

AI Model特式化模型服務流程

▲ AI Model 特式化模型服務流程

小結

整體而言,從開源式 AI 趨勢可觀察出智能轉型已刻不容緩,而意藍整合搜尋引擎、語意分析與生成式AI等尖端軟體技術,可協助企業快速整合外部市場情報與內部專屬知識,並可透過特式化 AI 模型的訓練與導入,提供客戶更多元的 AI 解決方案。

從文件堆中找答案太慢?AI 如何幫第一線即時掌握災情?

近年來, AI 技術的持續創新突破,推動了政府和企業內的數位變革,如何導入並善用 AI 以提升服務的效率和品質,成為各單位組織的重要課題。
國家災害防救科技中心(National Science & Technology Center for Disaster Reduction,以下簡稱災防中心或NCDR)為政府於2003年設立的專業機構,多年來專注於災害風險管理防救科技的研究;為了能在災害發生時更即時地掌握災情、強化危機事件處理能力,災防中心與意藍資訊合作,導入意藍「AI Search For KM」系統,運用生成式 AI 與自然語言模型建構「災害防救知識問答平台」,大幅提升災情資訊處理效率,並以數據支持決策判斷,為智慧城市發展奠定穩固基礎。

災防中心背景與需求介紹

國家災害防救科技中心成立於2003年,主要任務在於提升台灣在面對各種自然災害時的應變能力與減災效果、確保民眾生命財產安全。面對台灣頻繁發生的地震、颱風、土石流等天然災害,災防中心不僅需在災前做好準備,也必須在災害發生後迅速掌握最新狀況,整合、分析各類災情資訊以協助政府及相關單位作出精確的應對決策,並提供必要的預警或通報。

隨著大量災情資訊不斷累積,災防中心在知識管理升級方面的需求日益增強;另一方面,數位化時代下社群媒體和網路社群亦成為災情資訊快速傳播的主要來源,這些公開管道中的資訊量龐大且更新頻繁,如何高效蒐集、結構化、分析並運用這些來自各地的災情回饋,也是災防中心需面對的重要課題之一。

以 AI Search for KM 建構「災害防救知識問答平台」

為了更快速、準確地掌握災情資訊以提升災害應變效率,災防中心選擇與意藍資訊合作,導入意藍新一代 GenAI 知識管理工作平台「AI Search for KM」,運用人工智慧與自然語言模型技術,並結合社群輿情資料和專屬的歷史數據庫,打造「災害防救知識問答平台」,解決資訊來源分散、數據處理繁複等痛點,協助單位提升資訊處理效率,以利更好地應對和管理災害風險。

意藍協助災防中心建構災害防救知識問答平台的流程如下:

  1. 資料蒐整與預處理:蒐集歷年來既有的災害事件情資研判報告、即時觀測數據(如雨量、河川水位等),以及各大公開媒體、Facebook 粉絲團、Dcard、巴哈姆特、Mobile01 及 Ptt 等公開討論區的地區版等資料,經過清整、結構化與預處理,將結構化與非結構化資料均轉換為模型可理解的格式。
  2. 語意分析與標記:透過語意分析技術,讓 AI 自動判別每一篇災情文章內容中提及的地理資訊、災害事件以及災情程度等,將這些重要詞彙辨識出來並自動標記,以利後續的索引和檢索。
  3. 大語言模型選擇:評估各個大語言模型在災害防救領域問答的真實性、回覆速度、正確性、可讀性、理解上下文與統整能力等效果,選擇最適用的自然語言模型。
  4. 建立資料向量索引、設定參數:提高檢索與問答時的效率及準確性,確保 AI 模型對災害知識有精準的搜尋能力與答覆效果。

透過 AI Search for KM 所提供的知識平台,災防中心便能夠針對歷年災害事件、抑或即時災情進行問答,系統會逐步拆解使用者所輸入的問題,再透過大語言模型(Large Language Model, LLM)及檢索增強生成技術(Retrieval-Augmented Generation, RAG)生成完整回覆。

以颱風相關的問題為例,使用者可對系統以口語文字方式提問,如「哪個地方災情最嚴重」、「哪些鄉鎮的河川水位超過一級警戒」等等,AI Search for KM 便會即時調用內部知識庫及外部即時數據,找出與使用者提問最相關的多個參考內容,從中綜合歸納出答覆。AI Search for KM 具備簡便、容易使用的介面,能快速統整內部及外部、文字及數值的各類數據,在分秒必爭的防災與救災時刻,提升作業效率。

問答情境1 - 分析災情嚴重區域

▲ 問答情境1 – 分析災情嚴重區域

問答情境2 - 調用即時數據,掌握全面性災情

▲ 問答情境2 – 調用即時數據,掌握全面性災情

透過與意藍合作導入 AI Search for KM 系統,災防中心能夠更高效地整合歷史與即時災害數據,在災害發生前後做出精確的災情管理判斷,及時釐清災情狀況並調度人力與資源,落實循證決策、全面提升災害應變能力;未來意藍也將持續與災防中心攜手,逐步實踐智慧城市願景。

WAVE_BN_2
亞洲指標 AI 造浪展
「WAVE 2025(World AI Vision Exhibition)」

意藍將於7/31(四)-8/2(六)參展,攤位編號 B1709
現場將分享我們在 AI 應用上的實務經驗,歡迎有興趣的你一起來交流!

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>打造企業專屬AI Model :精準賦能  提升決策與營運效能

精華文章打造企業專屬AI Model :精準賦能 提升決策與營運效能

打造企業專屬AI Model :
精準賦能 提升決策與營運效能

在數位轉型與資訊爆炸的現代,不少企業寄望 AI 技術能協助簡化工作流程、提升營運效率,然而在實際導入 AI 的過程中,卻發現通用的AI模型在面對企業內部專業知識、品牌語境或系統整合需求時,難以精準契合,導致應用效益未如預期。究竟如何真正讓AI轉化為營運與決策的助力?本文將帶您認識意藍推出的「企業專屬模型AI Model」,瞭解如何為企業量身打造更高效、貼合需求的AI模型應用服務。

為何企業需要打造專屬AI 模型?

在生成式 AI 技術普及之下,越來越多企業開始導入AI大語言模型以強化營運與決策流程。這類通用模型雖然具備強大的語言理解與生成能力,但由於訓練時多是基於開放性資料,缺乏對企業專業術語、內部流程與產業知識的理解,因此在實際應用上容易出現答非所問、編造內容,甚至資訊洩漏等風險。此外,許多通用模型無法無縫整合企業內部資料庫或系統,亦造成落地困難與開發成本增加。

因此,打造專屬的AI模型,並根據企業獨有的知識體系與資料架構進行訓練與調校,已成為企業邁向AI應用深化的關鍵一步,不僅能提升AI應答的準確率,也能確保回應內容符合內部規範與資訊安全要求,讓AI成為企業可信的智慧助理。

意藍AI Model介紹

AI Model四大功能特色

為打造更貼近企業真實需求的AI模型,意藍運用高品質的知識、外部數據,搭配組織內部的專屬資料進行AI訓練,強調透過事實資料準備法(Fact-based Data)強化四大AI核心能力:

  1. 精準判斷資料關聯性:不僅依賴關鍵字比對,更能進一步理解資料間的邏輯脈絡,迅速識別並掌握關鍵資訊。
  2. 自動萃取重點內容:從大量資料中提取核心資訊,大幅減少人工篩選與整理的工作負擔。
  3. 彈性生成摘要:依據需求調整摘要的長度與風格,將冗長資訊濃縮成清晰簡明的內容,協助快速決策與報告整理。
  4. 即時互動問答:使用者可透過對話方式提問,AI Model便會基於真實資料、根據企業語境,提供準確且具實用的回應。同時,AI Model也具備角色適應能力,可調整語氣與風格,使應答內容更貼近品牌形象,強化顧客互動體驗的一致性。
AI Model導入優勢
在具備核心能力的基礎上,若AI模型的導入過程更快速、靈活,將能進一步提升其在組織內部的應用成效與擴展性。意藍的AI Model具備三大導入優勢:
  1. 資料準備門檻低:企業僅需提供核心知識與關鍵文件,其餘部分可由意藍既有資源支援,透過意藍旗下 「OpView 社群口碑資料庫」,即可即時補足大量市場情報,顯著降低資料整理與清洗的負擔。
  2. 訓練週期短、部署快速:意藍AI Model以自研大語言模型 eLAND GOAT 為基礎,結合企業專屬資料進行訓練,無須從零建模,大幅縮短模型建置時程,相較於傳統模型多需半年以上的訓練時間,AI Model最快僅需 3 至 4 週即可完成訓練並部署上線,加速企業導入流程與應用落地。
  3. 彈性 API 串接:AI Model可依企業需求,彈性串接內部系統與平台,讓 AI 成為工作流程中的智能節點,實現知識查詢自動化、報告輔助撰寫、客服輔助回覆等多樣應用場景。

▲ AI Model 服務流程圖

綜前所述,AI Model結合企業內部專屬知識、外部即時市場情報、深度語境理解能力與靈活高效的系統整合架構,不僅真正「懂企業」,更能貼近企業實際營運與決策需求,成為企業可信賴的智慧助手。

想進一步了解意藍AI Model嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

精華文章Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

Fine-tuning(微調)是什麼?
打造企業專屬AI大語言模型的關鍵一步

隨著 AI 技術的蓬勃發展,AI 大語言模型的應用也日益廣泛,從企業決策到內容生成,各行各業都在探索其潛力。然而,AI 模型有時無法準確回應特定需求,或因對特殊領域的知識有限而產生錯誤資訊,此時除了檢索增強生成(Retrieval-Augmented Generation,RAG)技術外,就需要透過 Fine-tuning(微調)技術來進一步優化、提升模型準確度。本文將帶您了解Fine-tuning的運作原理,並介紹其多元的應用與商業價值。

認識 Fine-tuning(微調)

什麼是 Fine-tuning?

Fine-tuning,也就是微調,是一種針對既有 AI 大語言模型進行優化的機器學習技術,透過調整模型權重,使其在特定應用場景下的輸出結果更準確、符合預期。Fine-tuning 保留基礎模型的能力,同時針對特定領域強化應答準確性,相比從零開始訓練一個新模型,大幅節省了開發所需的成本與時間。

為什麼需要 Fine-tuning?

現成通用的 AI 大語言模型雖然功能強大,但在特定領域如法律、醫療、金融、科技製造等產業中,可能無法精確理解專業術語或規則,甚至可能產生錯誤資訊,無法直接應對每個組織或企業的獨特需求。而透過 Fine-tuning,可以讓模型深度學習特定領域的知識、更準確地理解特定語境,進而提升整體專業性與應用價值,成為企業AI部署的重要步驟。

Fine-tuning 運作流程

Fine-tuning 的作業流程通常包括以下幾個步驟:

  1. 選擇預訓練(pre-train)模型

    根據企業組織的需求,選擇合適的 AI 大語言模型,如OpenAI GPT系列、Meta Llama系列、 國科會TAIDE模型、聯發科Breeze模型,或是eLAND GOAT模型等。

  2. 準備微調數據

    提供與任務或應用場景相關的資料作為模型的學習素材,如客服對話紀錄、法律文件、產品規格或研發文件、企業內部資料等,使模型能更準確地理解專業內容並優化回應品質。

  3. 調整模型參數

    透過微調數據對模型進行訓練,更新部分或全部數據資料的權重參數,使其更貼近企業應用場景的需求。

  4. 評估與優化

    藉由準確率(Accuracy)、召回率(Recall)、F1分數(F1 Score)等指標來衡量微調效果,並根據測試結果不斷進行調整與優化,確保模型輸出更符合使用者需求。

經過微調的AI模型,能夠更有效地應對高度定制化的需求,對於企業而言,無論在提升業務效率、改善客戶服務,或者優化內部決策過程中,都能發揮重要作用。

Fine-tuning 於企業中的應用

如前段所述,Fine-tuning 不僅是提升模型準確度的工具,更成為幫助企業提升營運效率、降低成本和創造競爭優勢的關鍵,以下進一步彙整 Fine-tuning 在企業中的三大應用價值:

  1. 增強企業專屬化服務

    透過 Fine-tuning,企業能夠調整 AI 模型的回應語氣、風格與內容,從而提供更具個性化的服務體驗。例如,在客服領域,企業可以根據不同客戶群體的特性、偏好或文化背景,調整模型的回應方式,進一步提升顧客滿意度;在科技製造業,許多特殊的產品規格、專業的用字及術語,都可以透過微調模型,讓研發人員在使用上更順暢。

  2. 提升專業知識掌握度

    Fine-tuning 可強化 AI 在特定領域的知識理解與應用能力,特別適用於法律、醫療、金融等高度專業的行業。例如,透過 Fine-tuning,使 AI 更熟悉特定的專利法條文與案例,不僅能幫助法律人員更快地檢索相關判例,還能協助草擬專業的法律文書,從而提高工作效率並確保法律建議的精準性。

  3. 提升業務流程的自動化與效率

    Fine-tuning 可根據企業的運營需求進行調整,使 AI 更精準地理解並執行特定任務,進而提升業務流程的自動化程度與運營效率,並降低人為錯誤。例如,在銷售自動化方面,一家電子商務公司可透過 Fine-tuning 優化 AI 銷售助理,使其根據顧客的購物歷史與個人偏好,自動生成量身定制的促銷訊息或產品推薦。如此一來,AI 不僅能更準確地預測顧客需求,還能主動推送適合的產品與折扣資訊,提高銷售轉化率,同時減輕銷售人員的工作負擔。

Fine-tuning 的優勢與挑戰

綜合來說,Fine-tuning 的核心價值在於 將 AI 從「通用」變成「專屬」,「標準化」變成「個人化」,讓企業能更有效地利用 AI 工具滿足需求。運用微調技術,企業可以大幅減少每次與 AI 互動所需的 Token 數量,從而降低運行成本。此外,企業可在內部環境中訓練 AI,既能確保敏感資料不外流,也能強化資料安全性,而經內部數據微調後的 AI ,能更快速生成精確回應,提升互動流暢度並減少錯誤資訊的風險。

而雖然 Fine-tuning 具有諸多好處,但是也具備一定的技術難度。一般而言,Fine-tuning 需克服的挑戰如下:

  1. 選擇合適的預訓練(pre-train)模型及微調方法

    在技術層面, Fine-tuning 微調可採用多種不同的方法,如何在保留模型原有能力(capability)的同時,又獲得最好的學習效果,需仰賴有經驗的專家給予指導,並進行系統化的實驗。

  2. 準備適當的訓練資料集

    微調數據的數量、品質以及形式都將直接影響最終成果。大量但品質低劣或格式不佳的數據,未必能得到好的微調結果;而具備高品質、形式佳的數據,即便數量有限,仍可透過數據合成(data synthesis)或強化等技術的輔助,也可能有利於微調的成功。

  3. 確保適當的運算資源

    在 Fine-tuning 微調模型時,通常需要比模型推論(inference)更多的資源,如算力和記憶體等,而有時不一定一次就能微調成功,可能需要多回合地嘗試。因此,如何有效地運用算力及資源、提高微調成功率,也是必須克服的挑戰之一。

綜前所述, Fine-tuning 是企業打造專屬 AI 模型的重要技術,能協助企業更靈活應對市場變化、拓展創新應用,無論是提升客戶服務、優化內部流程,或創造新的商業價值,都將成為數位轉型與業務成長的關鍵。若企業希望充分發揮 Fine-tuning 的效益,則可選擇與具備經驗的廠商合作,以降低試錯成本與時間,提高成功率並加速導入。

想進一步了解更多意藍AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>生成式 AI 產業趨勢報告

下載報告生成式 AI 產業趨勢報告

生成式AI產業趨勢報告

從整體生成式AI產業應用趨勢,了解AI智能搜尋解決方案如何落地應用。

報告亮點

Part 1. 生成式 AI 話題趨勢探索
  • 1-1 生成式 AI 話題趨勢
  • 1-2 生成式 AI 的商業機會與挑戰
Part 2. 生成式 AI 的機會與應用場域
  • 2-1 生成式 AI 的應用趨勢
  • 2-2 核心技術—AI大語言模型
  • 2-3 關鍵應用—檢索增強生成(RAG)
Part 3. 以 AI Search 技術打造 AI 知識代理人
  • 3-1 本土生成式 AI 大語言模型—eLAND GOAT
  • 3-2 AI Search for KM 新一代生成式 AI 知識管理
  • 3-3 AI 驅動的多元未來:案例展示

生成式 AI 是基於深度學習,透過擁有大參數量的神經網絡來記憶學習大量的資料,並且在沒有明確標籤或指導之下,自行學習資料的分佈,來生成更多類似的資料。
而隨著近年來 AI 技術的持續創新與突破,百工百業都迎來了前所未有的數位變革。在這個數位轉型的關鍵時刻,AI 的導入與應用已成為各行各業提升競爭力和效率的重要策略。企業在應對市場挑戰與客戶需求時,數位化的布局顯得尤為重要。AI 技術不僅有助於提升運營效率,還能加強決策的準確性與靈活性,為企業的未來發展提供強大支撐。

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>AI 智能搜尋解決方案:智慧政府應用趨勢報告

下載報告AI 智能搜尋解決方案:智慧政府應用趨勢報告

AI 智能搜尋解決方案:智慧政府應用趨勢報告

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點,而本報告將為各位說明生成式 AI 於智慧政府之應用趨勢,並以實際公部門單位導入案例展示智慧治理的落地應用。

報告亮點

Part 1. 生成式 AI 於智慧政府之應用趨勢
Part 2. 意藍 AI Search for KM 服務優勢
Part 3. 政府單位導入應用展示
  • 3-1 智慧城市災防應變數據分析
  • 3-2 智慧循證治理與質詢擬答
  • 3-3 智慧政府民意及民眾陳情資訊分析
Part 4. 意藍 AI Search for KM 服務導入方式
Part 5. 如何申請 AI Search for KM 服務體驗

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點。AI 的導入與應用已勢無法擋,公部門在應對科技挑戰與回應民眾需求時,數位化佈局顯得尤為重要。 而智慧政府的核心目標,就是利用先進科技來提升公共服務的效率與品質,並使行政作業更具透明度與精準度

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

Copyright eLAND Information Co., Ltd.