AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

AI 重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

近年電信詐欺逐漸走向組織化與科技化,詐騙集團除利用社群平台、假投資網站進行詐騙,也可能透過 AI 技術製作換臉、變聲等內容,使身分辨識與情資研判難度大幅提升。面對愈來愈複雜的犯罪模式,相關偵查單位接收到的資料量也隨之倍增,包含金融交易紀錄、通訊內容等分散於多個資料庫和不同格式文件中的資訊,調查人員往往要投入大量時間比對和整理,才能逐步釐清人物、帳戶、電話與金流的關聯脈絡。

偵查單位現行作業流程面臨的挑戰

在科技化浪潮下,犯罪手法不斷演變,偵查實務中所需處理的資料量與複雜度亦隨之增加。偵查單位的日常研析工作不僅仰賴多來源資訊,更必須在有限時間內整合破碎線索、重建金流與人物關聯脈絡。以下是偵查單位在作業中面臨的挑戰:
  1. 資料量龐大且複雜性高:偵查單位每天要處理的資料來源多元,包括民眾舉報、金融交易資料、新聞報導、社群訊息等。由於資料的格式各不相同,內容範疇又橫跨廣泛領域,使得前期研判工作負擔大幅增加。
  2. 案件脈絡難以快速掌握:當詐騙集團以組織化方式運作,各成員僅負責詐騙流程中的其中一個環節,這類分工模式便會導致案件線索散落於不同文件中。因此,調查人員在偵查辦案時,需花費大量時間比對、整理與交叉驗證,才能看出人物間的關聯、資金流向或上下游共犯結構,並進一步拼湊出案件全貌。

導入生成式 AI 解決方案為偵查單位帶來哪些效益

為解決上述痛點,意藍資訊協助偵查單位建置並導入「電信詐欺防制 AI 分析平臺」。本系統以檢索增強生成(RAG)架構為核心,整合生成式 AI、自然語言處理(NLP)、大型語言模型(LLM)及關聯分析等技術,並具備Agent多步驟執行任務的能力,在接受到指令後能自動跨來源檢索、比對並統整資料,重塑從資料彙整到案件研析的流程。整體系統可分為三大核心模組:自動摘要、關聯分析以及圖表生成,協助調查人員更快掌握案件全貌。 在此核心架構上,本案完成以下四大項重點建置:
  1. AI自動彙整與摘要可信結果:在偵辦電信詐欺案件時,調查人員常需要在短時間內了解人物、帳戶、交易紀錄與通訊內容等核心資訊。在檢索增強生成(RAG)架構與跨來源檢索能力的基礎下,調查人員提供人物姓名、公司或行號等與案件相關的線索資訊後,系統便會自動整合多來源資料與文件內容,進行語意分析與重點萃取,進而生成包含商工登記資料、戶籍資料、裁判書等資訊的摘要結果,並於回覆中提供資料的參考來源,有效縮短跨單位比對與人工查核所需時間。
  2. 關聯分析模組:利用 NLP(自然語言處理)和 LLM(大型語言模型)在多筆資料中找出人物、公司、地點、電話、帳戶等資料之間的關聯性,分析案件的交易關係或資金流向,並於生成的關聯結果中標示對應的文件與段落。如此一來,調查人員不僅能清楚掌握案件全貌與發展脈絡,也能夠依案件需求回溯原始內容,有助於未來查證、複審與移送書撰寫等作業流程。
  3. 圖表生成模組:藉由前兩個模組找出核心資訊與關聯性後,系統會將人物關係、資金流向等分析結果轉成視覺化圖表,讓案件脈絡一目了然。透過導入此模組,當調查人員面對人物關係與金流複雜的案件時,不僅能避免人工判讀造成的錯誤,若案件規模擴大,也能以現有架構研判新增之資料,節省時間成本。

透過導入「電信詐欺防制 AI 分析平臺」,偵查單位得以用更系統化的方式整合多來源資料,快速掌握關鍵線索與案件脈絡,使原先需大量依賴人工比對的研析工作,能在更短時間內完成,進而提升研析效率與判斷精準度。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 如何思考?從大語言模型看懂它的「腦內運作」

生成式 AI 是人工智慧(AI)技術的一個重要類型,而大型語言模型(Large Language Model, LLM)則是目前生成式 AI 在文字生成領域的核心技術基礎。以下將以精簡的內容,帶讀者快速了解三者的關係與運作方式。

人工智慧技術概述與生成式 AI 的定位

人工智慧(AI)包含多種模型與學習方法,各自負責不同任務。常見的 AI 學習方式包含:

  1. 監督式學習:給模型範例和答案,模型從中學到具鑑別力的特徵,進行分類或預測。
  2. 非監督式學習:僅提供資料,不給答案,讓模型自行找出規律與特徵。
  3. 增強式學習:不提供資料,而是給予「目標」與「獎勵規則」,讓模型透過試錯找到最佳策略。

生成式 AI 作為 AI 其中一種類型,通常使用大量未標註資料,讓模型學習語言或內容的分佈與規律,進而生成新的文字、圖像或音訊,不僅能分類或預測,還能解決問題與執行多樣任務。

生成式 AI 的語言生成技術基礎:大型語言模型(LLM)

在文字生成領域,生成式 AI 的核心技術之一是大型語言模型(LLM)。
LLM 會從大量文本資料中,自行學習「詞與詞之間」「句與句之間」的關聯與語言規律,並在收到使用者指令後,生成符合語意與邏輯的回應。
可以把 LLM 想像成「文字接龍」:

  1. 使用者先提供一段問題或內容(上下文)。
  2. 模型依據訓練資料學到的語言規律,預測「下一個最可能出現的字詞」。
  3. 一字一句生成,最後串成完整且連貫的回答。

相較於過去較為專職的自然語言處理(NLP)模型,大型語言模型具備三個主要優勢:

  1. 上下文理解能力更強:生成內容更有邏輯、連貫度更高。
  2. 多任務通用性:不需為每個任務打造不同模型,一個模型即可應付多種語言任務。
  3. 大量資料訓練帶來的知識廣度:掌握更多語法、語意與世界知識,提高回覆品質。

這些能力使 LLM 在許多應用中表現突出,例如:智能客服、文案創作、資料解讀與摘要等,都能藉由 LLM 達成自動化並提升效率。

生成式 AI 的挑戰:可信度與「幻覺」問題

儘管 LLM 能產生高品質內容,但在語言模型的統計運作特性下,仍可能出現「看似合理、實則錯誤」的回答,也就是常說的模型幻覺(Hallucination)。
原因在於:

  • 當模型遇到訓練資料中未出現或不確定的資訊時
  • 會依照語言規律「推測」答案
  • 而非查證或真正理解內容

因此在回答專業領域問題時,模型可能基於語料經驗生成答案,但缺乏真實的參考來源。

解方:RAG(檢索增強生成)技術

RAG(檢索增強生成)是一種補強大型語言模型回答可信度的架構。

為減少幻覺問題並提升回答可信度,近年興起檢索增強生成(Retrieval-Augmented Generation, RAG)技術,它結合了「資料檢索」與「生成式 AI」的優勢。RAG 的流程如下:

  1. 先向外部資料庫或文件進行檢索,取得相關且可信的內容。
  2. 再由模型依據取得的資料生成回答。

好處包括:

  • 減少憑空捏造的可能性
  • 讓回答更接近真實世界資料
  • 增強內容的可追溯性
  • 更適合企業知識庫、客服、法規查詢等具資訊正確性需求的應用情境

RAG 的概念不僅提升生成式 AI 的實務可靠度,也進一步拓展大型語言模型在產業中的應用範圍。

從人工查核到智慧偵查:AI 如何重塑金流分析效率

近年來,虛擬貨幣與數位資產市場快速發展,相關犯罪樣態日益多元。虛擬貨幣因具去中心化、匿名化與跨境流動性高等特性,使執法單位在偵查過程中面臨更大的挑戰。傳統依賴人工比對與文件查核的作業,不僅耗費大量人力與時間,也難以即時掌握複雜的金流脈絡。為提升偵查效能與準確度,政府機關積極推動數位偵查轉型,透過導入 AI 與大數據分析技術,強化資料運用與決策支援能力,逐步邁向智慧化執法的新階段。

為何偵查作業需導入 AI 技術?

隨著數位資產市場與虛擬貨幣交易蓬勃發展,相關犯罪手法與樣態也呈現多樣化趨勢,跨境交易頻繁、匿名性高且金流分散等,使執法單位面臨前所未有的挑戰。在偵查過程中,相關人員常需以人工從大量錢包地址與交易紀錄等資料中比對可疑關聯,而此種以人工比對與查核為主的偵查方式可能面臨的困難點包括:

  1. 資料分散、難以整合:交易紀錄散落於不同交易所,查找過程不僅費時,更仰賴交易所的主動配合。
  2. 人工查核耗時:偵查人員需自行分析金流紀錄與交易數據,工作量龐大且較難完全避免疏漏。
  3. 缺乏即時分析能力:傳統流程難以即時偵測異常金流或可疑關聯,易錯過最佳追查時機。
  4. 資訊視覺化不足:偵查人員需自行繪製幣流分析圖以呈現金流脈絡,難以快速掌握全局。

面對龐雜金流結構與快速變動資訊,導入 AI 與資料分析技術可協助自動化整合多源資料、提升金流比對與異常偵測能力,強化決策支援與案件研析成效。

AI 金流偵查系統建置成效

為回應上述挑戰,政府機關的相關單位近年積極導入 AI 技術,建置專屬的虛擬貨幣金流偵查系統,實現資料整合與分析自動化。意藍資訊作為台灣代表性的智能數據廠商,協助執行虛擬貨幣金流偵查系統專案,以下為技術基礎與應用效益:

  • 技術基礎與平台特性 
    系統以「AI Search for KM 新一代知識搜尋與知識問答系統及工作平台」為基礎,以 RAG 架構為核心,並整合搜尋引擎、向量資料庫、語意分析及大型語言模型,可針對特定領域資料進行理解與訓練,支援高精度的知識檢索與智能問答。且平台問答之回覆內容均可追溯來源,確保資料可靠性;同時,亦支援地端運行與權限控管,可以有效避免洩漏機敏資訊。
     
    在此基礎上,系統整合公開虛擬貨幣金流紀錄、內部案件資料及相關法律監理文件等,經結構化處理後形成資料庫,確保可依偵查任務需求調用對應資訊,最終建置出可於地端安全運行的「虛擬貨幣金流偵查系統」。
     
  • 核心功能與效益
    1. 核心功能:金流查詢
      採用 NL2SQL 技術,使用者可透過自然語言查詢交易紀錄,如詢問「這筆交易資金流向哪錢包?」系統便會自動轉換為查詢指令並回傳結果,並以視覺化方式呈現資金流向,大幅降低查詢門檻。此功能能夠節省資料比對與分析成本,縮短案件初步調查時間,提升分析準確性。 
    2. 核心功能二:偵查報告生成
      系統可根據過往相關之偵查與法律文件,自動生成偵查報內容並提供偵查建議,減輕人工彙整負擔,確保報告結構與語意一致,提升案件報告品質與流程效率 
    3. 核心功能三:偵查報告真偽驗證
      輔助驗證偵查報告真實性,根據實際數據與推論規則檢核報告內容,標示潛在錯誤或矛盾之處,強化報告可信度與司法採信力。

整體而言,透過此 AI 金流偵查系統的導入,偵查人員可直接以自然語言快速完成資料查詢、金流分析與報告生成,讓偵查流程更即時、精準、安全,顯著提升執法作業在效率、準確度與資訊安全三方面的表現,為虛擬貨幣相關的犯罪偵查提供全方位的支持。未來,此技術亦可延伸應用於其他犯罪樣態與偵查領域,推動執法作業邁向全面智慧化。 

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

AI偵查應用實例:以 AI Search for KM為基礎,打造虛擬貨幣金流分析系統

AI偵查應用實例:以 AI Search for KM為基礎,打造虛擬貨幣金流分析系統

AI偵查應用實例:
以 AI Search for KM為基礎,打造虛擬貨幣金流分析系統

近年來,隨著虛擬貨幣與數位資產市場的快速發展,相關犯罪樣態日益多元。虛擬貨幣因具去中心化、匿名化與跨境流動性高等特性,使執法單位在偵查過程中面臨更高的挑戰,而傳統依賴人工比對與文件查核的作業方式,不僅耗費大量人力與時間,也較難以即時掌握複雜的金流脈絡。為強化偵查效能與準確度,政府機關積極推動數位偵查轉型,透過導入 AI 人工智慧與大數據分析技術,強化資料運用與決策支援能力,逐步邁向智慧化執法的新階段。

為何偵查作業需導入 AI 技術?

隨著數位資產市場與虛擬貨幣交易蓬勃發展,相關犯罪手法與樣態也呈現多樣化趨勢,跨境交易頻繁、匿名性高且金流分散等,使執法單位面臨前所未有的挑戰。在偵查過程中,相關人員常需以人工從大量錢包地址與交易紀錄等資料中比對可疑關聯,而此種以人工比對與查核為主的偵查方式可能面臨的困難點包括:
  1. 資料分散、難以整合:交易紀錄散落於不同交易所,查找過程不僅費時,更仰賴交易所的主動配合。
  2. 人工查核耗時:偵查人員需自行分析金流紀錄與交易數據,工作量龐大且較難完全避免疏漏。
  3. 缺乏即時分析能力:傳統流程難以即時偵測異常金流或可疑關聯,易錯過最佳追查時機。
  4. 資訊視覺化不足:偵查人員需自行繪製幣流分析圖以呈現金流脈絡,難以快速掌握全局。
面對龐雜的金流結構與快速變動的資訊環境時,偵查作業亟需更高的效率與精準度;而透過導入AI與資料分析技術,能協助執法單位自動化整合多源資料、提升金流比對與異常偵測能力,強化決策支援與案件研析成效。

AI金流偵查系統建置成效

為回應上述挑戰,政府機關的相關單位近年積極導入 AI 技術,建置專屬的虛擬貨幣金流偵查系統,以實現資料整合與分析自動化。意藍資訊作為台灣代表性的智能數據廠商,協助執行虛擬貨幣金流偵查系統專案,以下將說明其技術基礎與應用效益。
  • 技術基礎與平台特性 

    採用意藍長期開發的「AI Search for KM新一代知識搜尋與知識問答系統及工作平台」為基礎,以 RAG 架構為核心,並整合搜尋引擎、向量資料庫、語意分析及大型語言模型,可針對特定領域資料進行理解與訓練,支援高精度的知識檢索與智能問答。且平台問答之回覆內容均可追溯來源,確保資料可靠性;同時,亦支援地端運行與權限控管,可以有效避免洩漏機敏資訊。 

    在此基礎上,進一步整合公開的虛擬貨幣金流紀錄、內部案件資料及外部相關法律監理文件等,經結構化處理後形成資料庫,以確保系統能依偵查任務需求調用對應資訊,最終建置出可於地端安全運行的「虛擬貨幣金流偵查系統」。 

  • 核心功能與效益
    1. 核心功能:金流查詢 
      採用 NL2SQL 技術,讓使用者以自然語言查詢交易紀錄,如詢問「這筆交易資金流向哪錢包?」系統便會自動轉換為查詢指令並回傳結果,並以視覺化方式呈現資金流向,降低查人員查詢門檻。此功能能夠節省資料比對與分析成本,縮短案件初步調查時間,提升分析準確性。 
    2. 核心功能二:偵查報告生成 
      系統能根據過往相關之偵查與法律文件,自動生成偵查報內容並提供偵查建議。此功能可減輕人工彙整負擔,確保報告結構與語意一致,提升案件偵查報告的品質優化偵查流程效率 
    3. 核心功能三:偵查報告真偽驗證 

      此功能可以輔助驗證偵查報告的真實性,根據實際數據與推論規則檢核報告內容,標示潛在錯誤或矛盾之處,強化報告可信度與司法採信力。

整體而言,透過此 AI 金流偵查系統導入,查人員可直接以自然語言快速完成資料查詢、金流分析與報告生成,讓偵查流程更即時、精、安全顯著提升執法作業在效率、準確度與資訊安全方面的表現為虛擬貨幣相關的犯罪偵查提供全方位的支持未來,此技術亦可延伸應用於其他犯罪樣態與偵查領域,推動執法作業邁向全面智慧化 

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

政府AI應用實例 :AI Agent 助力員額評鑑智慧化

政府AI應用實例 :AI Agent 助力員額評鑑智慧化

政府 AI 應用實例 :
AI Agent 助力員額評鑑智慧化探索

近年來,各級政府積極推動數位轉型,各種AI 工具被廣泛導入於資料處理、行政作業與公共服務中,為智慧治理奠定了基礎。其中,「員額評鑑」是需要跨部會協作的大型作業,過程中必須整合來自不同單位的大量人事資料、並加以比對與分析,以作為人力配置與政策規劃的重要依據。這類作業流程在傳統做法多仰賴人工,往往需要投入可觀的時間與人力來完成,而隨著資料規模逐年增加,以及各政府單位對政策即時性與精準度的需求提升,如何運用新技術來提升效能,已成為重點發展方向。

為何員額評鑑專案需導入AI技術?

員額評鑑是人力配置與政策規劃的重要基礎,然而在傳統作業流程中仍存在一些挑戰,主要包含以下幾個面向:

  1. 資料分散與格式不一:各單位的人事資料往往分布於不同系統,各自採用的格式與欄位設計可能也不完全一致,因此在整合過程中需要額外的整理與比對步驟。可以根據使用者指定的目標,自行規劃任務執行流程。
  2. 計算規則繁複:評鑑作業涉及缺額比率、配置比例等多種指標,每一項都需要依循特定規則計算,當數據量龐大時,往往需要投入大量人力與時間。
  3. 報告撰寫一致性:由不同人員撰寫的分析報告,常因表達方式或重點選擇不同,而在結構與呈現上存在差異,使得跨單位報告之間,雖各自完整,但難以直接逐項對照。
  4. 決策資訊延伸有限:傳統報告多偏重數字與表格呈現,雖能反映現況,但較少延伸至趨勢研判或策略建議等,若要做為高層決策時的參考依據,則需再投入額外時間進行解讀。
  5. 評鑑作業的持續性需求:員額評鑑不是單次作業,而是需長期推動與追蹤的核心管理機制,過程中必須同時參考當期數據、歷年人力發展計畫以及現行施政方針,進行跨期的比對與差異分析;若僅依靠人工,可能造成比對標準不一致或耗費過多時間。

員額評鑑專案導入 AI Agent 之效益

針對上述痛點,導入AI技術成為理想的解決方案。其中,「AI Agent」與一般仰賴接收指令、並自既有資料庫中搜尋回傳答案的生成式AI相比,具備了任務導向與自主規劃能力,不僅能進一步理解指令,還能主動拆解任務流程、規劃執行步驟,在更複雜的任務中發揮價值;而在公共治理的情境中,這樣的特性特別適用於員額評鑑這類需要跨部會協作、涵蓋資料龐大的任務。 意藍作為台灣代表性的智能數據廠商,便曾協助公部門單位執行員額評鑑之專案。在專案中,我們以AI Agent架構貫穿解決方案,並結合「自動化流程」與「大語言模型生成」,協助整合不同來源的資料、依規則完成計算與標註,進一步生成具體的分析與建議。 專案執行主要分為四個層面,各自帶來的效益如下:
  1. 資料整合與分類:透過自動化工具,將不同來源的員額數據表格與其他業務系統資料彙整成統一格式,並依照特定評鑑面向進行分類。這一步驟大幅降低了人工清理資料的時間成本,並確保後續分析的基礎更為穩定。
  2. 自動化計算與重點標註:系統依照既定規則,自動完成缺額比率計算,並即時以紅字粗體標註超過整體平均值的單位。這樣的標註機制能幫助決策者迅速聚焦於需優先關注的重點,而不必再逐一比對大量數據。
  3. AI 報告生成與摘要:借助大語言模型,將枯燥的數據轉化為文字敘述,自動生成完整報告。報告中不僅包含增減員因素分析,還能提出具體的改善建議與政策回應,例如留才策略、配置建議等,使報告真正具備決策參考價值。
  4. 共通性問題分析:除了單位別的數據與建議外,AI Agent 也能跨單位自動彙總共通性問題,並生成全域性的分析。這使得高層在制定政策時,不再只看到單點狀況,而能獲得更全面的參考視角。

綜上所述,AI Agent 的導入全面優化了員額評鑑流程,從資料整合、計算、報告撰寫到跨單位分析,都能以更高的效率及一致性完成,不僅減少人力負擔,更提升成果的決策參考價值,驗證了智慧公共治理中的AI應用潛力。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

Copyright eLAND Information Co., Ltd.