<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>拆解生成式AI知識管理系統如何克服組織的KM痛點​

精華文章拆解生成式AI知識管理系統如何克服組織的KM痛點​

拆解生成式AI知識管理系統如何克服組織的KM痛點

生成式AI的應用是當前知識管理領域的一個重要發展方向,其應用範圍與情境更是廣泛。本文將剖析各類組織常見之知識管理痛點,並說明AI Search for KM具體提供之協助與達成效益。

本期 AI 知識庫亮點

生成式AI於知識管理應用上的發展趨勢?

生成式AI結合知識管理之重點優勢
新一代知識管理系統結合生成式AI,可以發揮的重要技術優勢便是利用AI優秀的語言理解能力,可回答問題、以及自動生成內容,讓使用者更輕鬆的找到問題相關的參考知識、吸收內容中知識點,大幅提升知識工作者的效率,進而提高知識管理的效益,方向上可歸納為以下要點:
  1. 知識重點摘要與生成
    生成式AI可以自動化彙整與問題相關的參考文本資訊,幫助使用者更有效地吸收文本知識。
  2. 24小時隨時服務
    基於生成式AI的智能知識搜尋與問答系統可以提供即時的、準確的問題回覆,有助於協助員工隨時隨地解決業務中遇到的問題。
  3. 問答體驗更人性化、高效
    生成式AI不僅能夠理解語言的語意,還可以更好地處理多樣性的自然語言表達,使知識服務更加貼近使用者的需求。
生成式AI結合知識管理可能面臨之挑戰
而關於生成式AI在知識管理應用上可能會遇到的挑戰及問題,則包含:
  1. 機密性和資安風險
    對於許多組織而言,使用生成式AI相關服務時容易有外洩機密、資安等疑慮,甚至因此頒布生成式AI工具禁令,即是為了防範此問題發生。
  2. 答非所問或錯誤解答
    生成式AI模型本身對於其未訓練過的資料,可能會出現杜撰答案或是答非所問的狀況,無法控制AI生成結果之可信度,也缺乏標示資料來源。
  3. 微調領域模型成本高
    一般的生成式AI模型可能無法回答特定領域的知識,需要透過模型微調 (fine-tune) 才能使其具備一定程度的領域知識回答能力;不過微調模型所需投入的人力、機器設備等方面成本皆較高。
  4. 系統整合不易
    要將企業內部知識管理系統內留存的知識,與生成式AI模型進行串接整合,中間牽涉到技術、成本等問題,整合過程不容易且缺乏經驗。
總體而言,生成式AI在知識管理中的應用前景廣闊,但組織應該謹慎應對機密性和資安問題,同時確保模型的合理使用,並以活化企業既有知識,最大程度地發揮其效益並降低潛在風險。

新一代生成式AI知識管理系統之情境案例

而新一代生成式AI知識管理系統,又是如何發揮上述優勢,同時克服生成式AI可能帶來的資安、杜撰答案等隱患呢?接著我們便以案例,來向大家說明新一代生成式AI知識管理系統如何成功為各類企業組織加值,透過AI智能進行知識管理。
剖析各類組織常見知識管理痛點

我們以實際使用新一代生成式AI知識管理系統 (AI Search for KM) 的客戶案例來看,當時該組織所面臨到的痛點有:

  1. 知識文件檔案量大,要找到所需的檔案文件需花大量時間,常常不知從何找起。
  2. 問題知識點散落於不同檔案文件之中,需要看過所有相關檔案才能完整的彙整、吸收其中的知識內容。
  3. 無法針對不同部門、不同層級間,所能接觸到的知識文件檔案、對檔案執行的動作(閱讀存取、編輯修改等)進行權限控管。

除此之外,過去市面上的知識管理系統多半只能透過關鍵字搜尋所有的檔案名稱是否命中關鍵字,需要使用者逐一自點開檔案、檢視其中內容,再以人工將不同檔案文件中的知識點自行消化整合,轉化爲問題的最終彙整知識內容。此外,市面上這種以搜尋為核心的知識管理系統,多半無法兼顧到組織對於檔案文件所需的權限控管機制。

AI Search for KM 具體提供之協助與效益
而新一代生成式AI知識管理系統 (AI Search for KM) 是如何解決上述企業知識管理痛點、貼近使用者需求? 透過結合搜尋引擎技術、能夠處理各種非結構的知識文件檔案,並提供整合權限控管機制的一站式平台,讓使用者可以透過單一平台找到所需檔案文件,同時滿足各類組織的機敏資料控管、部門權限劃分需求。

此外,再結合語意分析與生成式AI技術,AI Search for KM讓使用者以口語化文字提問,快速且精準的找到問題相關參考檔案,並進一步整合不同檔案中與問題相關的知識點,彙整為白話文字回覆,提升使用者體驗並加快取得知識點的效率,成功活化組織內部的知識管理生態。

最後,AI Search for KM可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,立刻就可以升級具有生成式AI的能力,並且可選擇使用雲端或地端大語言模型,可以部署在企業內部環境中,免除機敏資訊外洩的疑慮。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>知識管理結合生成式AI?新一代知識管理系統的5大優勢

精華文章知識管理結合生成式AI?新一代知識管理系統的5大優勢

知識管理結合生成式AI?新一代知識管理系統的5大優勢

知識管理對企業長期發展至關重要,而乘著AI趨勢,知識管理系統又可以怎麼與生成式AI結合,發揮加乘效果?本文旨在介紹新一代生成式AI知識管理系統的五大優勢,並說明意藍資訊AI Search for KM如何應對企業知識管理中的挑戰,翻轉企業知識生態。

新一代生成式AI知識管理系統有何優勢?

傳統的知識管理系統 (Knowledge Management System) 依照知名管理學大師Thomas H. Davenport教授之研究成果,強調累積留存大量的工作知識 (Working Knowledge) ,再經由建立知識社群 (Knowledge Community) 做活化應用。然而許多年過去了,很多企業花費大量的人力、時間,在於將知識留存於系統中,這樣的做法並沒有不對,但是過度強調在「知識入庫」的時候,要填寫非常詳細的知識索引卡 (metadata),例如所屬知識分類、與其他知識的相對關係、關鍵字詞等,這會讓員工同仁對於上傳知識感到麻煩而卻步;另一方面在使用知識的時候,需要透過關鍵字詞、知識分類等來找尋知識,有時候員工同仁就是不知道怎麼找尋知識,遑論下出正確的關鍵字詞,這將使得傳統知識管理系統的使用率日漸下滑,最終成為企業內部的封存檔案館、知識「蚊子館」,沒有充分發揮出潛在的效益。
究其原因,就在於傳統的知識管理系統的技術不夠聰明,需要經過繁瑣的系統教學和使用步驟,沒辦法讓系統代勞大部分的事情,例如只要將知識文件上傳,系統就會聰明地自動進行拆解、分析,下次有需要的時候直接用口語查詢,系統就會在理解問題、遍覽知識庫之後,用口語整理出所需要的答案 – 這才是理想的企業知識管理系統。
新一代生成式AI知識管理系統5大優勢
運用了生成式AI (Generative Artificial Intelligence,GenAI) 的新一代知識管理系統AI Search for KM,就是企業內簡單易上手、聰明的知識管理系統。其內部整合了生成式AI、搜尋引擎,和NLP技術(自然語言處理,Natural Language Processing),讓企業員工只要上傳載入知識文件後,就可以輕鬆地檢索和提問知識,進一步解決企業知識的運用流程不夠自動化、搜尋不夠智能化等問題,以及員工學習與內化之人力成本過高等問題。相較於一般知識管理系統,新一代知識管理系統AI Search for KM之具體優勢更包含以下:
  1. 自動化搜尋和回答
    新一代生成式AI知識管理系統具備先進的搜尋引擎和生成式AI技術,如同企業的專屬智能助理一般,能夠自動化搜尋知識庫中的資訊並提供即時、準確的回答。
  2. 個性化和智能化回答
    採用生成式AI技術,能夠理解和處理自然語言,讓使用者能夠以更直觀、自然的方式與系統進行互動,並根據使用者的偏好和上下文提供個性化的回答,且支援口語問答,使知識服務更加貼近使用者的需求。
  3. 處理非結構化資料的能力
    相較於傳統知識管理系統,新一代生成式AI知識管理系統更擅長處理非結構化的資料,例如營運報告、研發紀錄、技術文件、客戶問答等,即便是大量文字、沒有特別填寫知識分類或是關鍵字詞,都可以直接透過AI來自動拆解分析,進一步做到內容理解。這將可以放大企業知識價值,讓企業資源均可以被有效利用。
  4. 即時更新和動態適應
    透過即時更新知識庫,不需要重複大量的人工來整理知識並上傳入庫,這對於動態變化的環境,讓系統能夠應對新興的知識和快速變化的業務需求,自動分析整理,相較於傳統系統更加靈活。
  5. 使用者友善
    新一代生成式AI知識管理系統設計為使用者友善,提供直觀的介面和易於操作的功能,只要會口語詢問就能活用企業知識,可減少使用者的培訓成本,讓企業員工均能夠輕鬆使用。
總結來說,新一代生成式AI知識管理系統在搜尋、理解、回答和適應等方面具有更顯著的優勢,使得企業能夠更有效地管理和運用知識資源。

生成式AI知識管理系統如何應對企業知識管理中的挑戰?

知識管理與AI的結合雖勢不可擋,然隨著生成式AI的蓬勃發展,大眾對於資安、資料保密等議題也愈發重視,除此之外,該如何避免知識管理系統結合生成式AI後產生杜撰回覆,也是一重要課題,故意藍資訊的新一代知識管理系統AI Search for KM不僅讓AI解決方案實際落地,更能化解以生成式AI進行知識管理時,企業所會面對到的挑戰:
  1. 提供可信的回覆
    AI Search for KM專注於企業自身所建構的知識庫,包括精準引用企業知識庫裡的資料,能夠讓生成式AI「言之有本」,回答有具體根據,能夠列出知識文件的出處及參考段落,進行確認和覆核,將可以大大地提高可信度。也可以整合企業部署在內部資訊環境中、既有的知識管理系統,讓系統回覆能基於實際數據和企業內部知識,再加上先進的搜尋引擎技術,避免生成式AI因不實際資料而產生的錯誤或幻覺 (Hallucination)。
  2. 數據安全與隱私強化
    透過「權限控管機制」可以結合到企業內部的部門組織權限,限制每位員工所能夠存取問答的知識範圍,符合企業資訊安全的規範。另一方面,可以「建立企業地端專屬模型」,可選擇性地將整套系統部署在企業內部環境中,如此AI Search for KM可以協助企業設定使用者訪問權限、提高安全性、降低資料外洩風險。 企業可以自行根據職位、部門、專業領域來限制或開放不同層級的訪問權限,以確保機敏資訊僅供具備權限的相關人員查閱,從而有效避免內外部知識外洩的安全疑慮。
  3. 適合不同產業和不同規模之企業
    新一代生成式AI知識管理系統 (AI Search for KM) 適用於各式產業、規模之企業,從少數員工的工作室或是事務所,到大型集團企業,甚至是政府與公家機關單位,其應用優勢主要體現在保密性和可靠性方面。 首先AI Search for KM,提供地端運算方案,透過將生成式AI模型運行在本地環境,系統可以極大程度的降低外部入侵風險,從而確保企業和機構的機敏資料得到有效保護,減少資訊洩露風險;另一方面,其所生成之回覆均是基於企業內部所建立之知識庫,避免出現生成式AI杜撰、虛構答案的AI幻覺問題,進而減少錯誤資訊被提供的風險、提高使用者知識內化的效率與精確度。
  4. 自動學習與持續優化
    將知識管理系統結合生成式AI後,再透過語意分析、知識庫動態更新等方式,讓新一代生成式AI知識管理系統具備自動學習和不斷優化回答準確性的能力。 透過語意分析技術,實現對語境和上下文的理解與感知,讓系統可以更好地理解使用者提問,並準確回答涉及特定上下文的問題;而知識庫的動態更新,則可自動將新的檔案文件知識整合至知識庫中,確保回答時參考知識點的即時性與時效性。
此外,新一代生成式AI知識管理系統亦可透過使用者反饋機制,利用使用者的回饋來調整回覆相關參數,從而改進後續回答內容,提升回覆準確性。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

Copyright eLAND Information Co., Ltd.