<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>企業如何推動知識管理?4步驟讓知識動起來

精華文章企業如何推動知識管理?4步驟讓知識動起來

企業如何推動知識管理?
4步驟讓知識動起來

隨著市場上的競爭日益激烈,如何有效推動知識管理成為了企業提升競爭力的關鍵;然而,許多企業在推動知識管理的初期,常常不知如何起步。知識管理不僅涉及知識的識別、儲存,更包括如何系統性地分享和應用這些知識,本文將介紹知識管理的基本概念,並說明可以從哪些面向著手建立和推動知識管理體系,最後深入探討生成式AI如何為知識管理領域帶來革新。

知識管理概念介紹

知識管理是什麼?
知識管理(Knowledge Management, KM)是指在企業或組織內部,對知識進行系統性的蒐集、保存、組織、分享和應用的過程,將分散在個人、團隊和系統中的知識轉化為整個組織可以利用的資產,進而提升組織的營運能量和整體競爭力。
知識管理如何提升企業競爭力?
知識管理可以透過以下多種面向提高企業競爭力:
  1. 改善營運效率:藉由知識管理,員工可以分享和存取企業或組織內部的資訊,在遇到問題時,也能通過知識庫或企業內部的知識分享平台迅速找到解決方案,避免重新投入時間和資源去解決過去發生過的問題,進而提升生產力與整體營運效率。
  2. 加速創新能力:企業可以透過知識管理,從現有技術和過往經驗中持續學習,並不斷進行優化,加速產品的創新及發展進程。
  3. 提高決策品質:知識管理促進了既有知識與資源的整合,使企業能夠記錄和分析過去的決策及其結果,藉此更準確地預測市場風險和潛在挑戰,加速決策過程並提升決策精準度。
  4. 經驗傳承:知識管理有助於經驗的傳承,除了避免人員重複學習和研究,也可以減少因員工離職或崗位變動造成的知識流失。

企業推動知識管理4步驟

從零開始推動知識管理是一個需要循序漸進的系統化過程,涉及多個層面的協同與整合,而企業可以從以下四個步驟著手:
  1. 知識需求分析:分析企業內部的知識需求,確定哪些知識對企業的運營和發展至關重要,並識別現有知識資源和潛在的知識缺口;同時盤點目前的知識管理狀況,包括知識儲存方式、知識共享文化以及技術基礎設施等,找出需要改進的領域。
  2. 整合發展目標並制定策略:根據需求分析的結果,制定詳細的知識管理計劃,包括如何蒐集、存儲、分享和應用知識,並設定具體的里程碑,將知識管理融入企業發展策略中。
  3. 營造知識分享文化:持續宣導知識分享對於個人和企業長期發展的重要性,除了高層人員以身作則外,也通過培訓、激勵措施或知識管理競賽等,鼓勵員工主動分享經驗與知識,抑或讓知識物件的經營成為員工績效評估的加分專案。
  4. 導入適當技術:結合生成式AI人工智慧技術,對企業內外部知識進行系統性盤點,建構一站式資訊平台,實現 AI 輔助的知識檢索與問答,提供知識的分享、學習、再運用與創新,包括知識地圖、專家黃頁、知識社群、結構化在職訓練及問答等。
而若是原先就有既有知識庫的企業,則可以透過以下方式優化並提升知識運用效率:
  1. 評估現有知識庫:全面審視企業內部的知識庫,包括其結構、格式、內容及涵蓋範圍,識別關鍵知識,以及和潛在需要補強的地方。
  2. 導入新一代生成式AI知識管理系統:對現有知識庫與生成式AI知識管理系統進行整合,並利用AI的自然語言處理能力,提升知識檢索的準確性以及效率。
  3. 即時更新與動態適應:建立即時更新機制,確保知識庫中的內容能即時、動態調整,以快速反映業務需求和市場變化。
  4. 加強處理非結構化資料:透過語意分析技術,將非結構化資料轉換為結構化資料,並結合生成式AI技術,利用其自然語言理解和生成能力,自動化處理大量非結構化資訊,將其轉化為可檢索和使用的知識,提高知識庫的全面性和實用性。

生成式AI對知識管理的影響

隨著生成式AI技術的發展,其為知識管理領域帶來了重要的革新。在技術層面上,它讓知識的檢索變得更為彈性;在應用層面上,則讓使用者能更有效且快速地吸收相關知識。
技術面的影響:搜尋檢索更彈性,更容易學習上手
傳統的知識檢索方式主要仰賴關鍵字檢索與預設的分類樹結構,而這樣的檢索方式存在兩個痛點:
  1. 對於使用者來說,較難將問題轉換成複雜的關鍵字組合進行提問,也因此使用門檻較高。
  2. 關鍵字的檢索多是以「關鍵字組合的出現次數」作為搜尋依據,無法反映出問題與參考文本間的語意關係,造成檢索結果可能與用戶期望有所偏差。
將生成式AI導入知識管理領域後,應用其「自然語言對話」的特性,可以有效解決上述兩個痛點:
  1. 生成式AI允許使用者以自然語句直接輸入問題進行提問,用戶無須把問題轉換成複雜的關鍵字組合,降低了使用門檻。
  2. 生成式AI能夠更好地理解問題的語意,使搜尋結果能夠更準確地反映問題的內容,並找到與問題真正相關的參考文本。此外,生成式AI可以生成淺顯易懂的答案,直接解決使用者的問題。
導入及使用上的影響:更有效的知識吸收與消化
傳統的知識管理,在導入及使用上往往停留在「檔案」層級,使用者須透過關鍵字檢索找到最可能的檔案後,自行閱讀數十甚至上百頁的內容,從中找出與問題相關的資訊,再進一步消化以解答問題;而這樣的架構將使得用戶無法「快速且有效」地吸收、消化知識。 引入生成式AI技術後,這一問題則能得到顯著改善。生成式AI將知識管理提升到「答案」層級,利用AI的語意理解及自然語言問答能力,讓使用者可以直接獲取系統所參考的資料庫中相關檔案的段落,並生成白話回答,協助使用者高效達成知識消化及吸收的目標。

企業導入AI Search for KM之優勢

意藍的AI Search for KM即是整合生成式 AI、高速搜尋引擎與 NLP 技術的新一代生成式 AI 知識管理系統,其所具備的功能特色如下:
  1. 支援多種檔案格式:AI Search for KM系統支援各種常見的檔案格式,包含常用的Office、PDF、文字檔等等,滿足企業需求。
  2. 權限控管機制:確保使用者僅能查詢到自己有權限查看的檔案與文件,避免資料洩露,滿足企業管控機敏資訊、劃分部門權限等需求。
  3. 全文檢索:系統不僅能夠檢索檔案的標題和內文,也能查詢作者及其他相關資訊,提供廣泛且彈性的資料檢索範圍,提升使用者找到所需資訊的效率。
  4. 支援對話問答:AI Search for KM支援使用者以對話問答方式與系統互動,並會根據問題和參考資料提供口語化的回答,幫助使用者輕鬆理解和應用所得知識。
  5. 支援地端或雲端服務:企業可以根據自身需求選擇最合適的部署方式,導入雲端或是地端服務,並可根據不同使用情境和文件資料需求切換不同的大型語言模型。
而對於企業而言,導入AI Search for KM具有以下優勢:
  1. 降低人力成本:透過AI Search for KM自動化搜尋和回答的功能,有效減少員工手動處理知識資訊的需求,簡化知識搜尋與管理流程,節省人力成本。
  2. 提升作業效率:因AI Search for KM支援多種格式的檔案管理,使得資訊不再分散,方便員工找到所需資料,並提供即時準確的回答,縮短員工資訊獲取時間。
  3. 增強知識內化與應用:AI Search for KM支援自然語言互動方式,讓員工能以白話文提問,快速獲得所需知識,從而提升消化和應用知識的效率與準確度。
  4. 強化資料安全與隱私:AI Search for KM的權限控管機制,確保只有具備相應權限的人員才能查找和檢視資料,且系統支援地端服務,能有效防範內外資料洩露風險。
  5. 促進知識共享與協作:AI Search for KM可以整合不同來源的資料,讓各部門的員工都能輕鬆提問和搜尋知識,促進團隊合作交流。
推動知識管理對企業的長期發展至關重要,不僅是提升競爭力的核心,更是確保企業持續創新和應對市場變化的基礎。隨著生成式AI技術的引入,知識管理的應用層次也得到了極大提升,透過導入合適的知識管理系統,企業便能更靈活地管理和運用知識資源,從而在競爭激烈的市場中保持領先地位。

想進一步了解「新一代生成式 AI 知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>AI驅動的城市未來:意藍資訊AI智能搜尋解決方案

精華文章AI驅動的城市未來:意藍資訊AI智能搜尋解決方案

AI驅動的城市未來:
意藍資訊AI智能搜尋解決方案

意藍資訊 (6925) 是國內首家公開掛牌的AI智能數據代表廠商, 憑藉自有核心技術 Search搜尋、NLP語意分析、ETL數據處理,更進一步結合生成式AI,為企業/組織提供多元的新一代AI智能解決方案。

本期 AI 知識庫亮點

意藍資訊核心技術

意藍資訊的核心技術包含Search搜尋、NLP語意分析、ETL數據處理
  1. Search搜尋
    以工業級C++技術打造自有核心,並透過獨家的P2P點對點分散式部署架構,讓系統可以乘載巨量數據處理規模,並保有遠勝於開源項目的處理效能、同時具備良好的多國語言搜尋能力。
  2. NLP語意分析
    意藍在自然語言處理上專研多年,以深度學習(Deep Learning)技術為基礎打造出新一代的語意分析核心技術(Deep NLP),提供包含斷詞、情緒分析、屬性詞擷取、自動摘要等成熟技術,兼具準確度及處理效能,可連續處理巨量數據,並從數據中學習。
  3. ETL數據處理
    透過分散式平行化自動擷取架構,讓意藍在資料爬取與清理方面,可以適應多種數據,處理量大、變動快的非結構化資料,讓各使用單位可以即時快速、有系統地運用所需資料。
而乘著AI熱潮,意藍更進一步結合生成式AI,開發出eLAND GOAT大語言模型及檢索增強生成RAG(Retrieval-Augmented Generation)技術,推出各式AI智能搜尋解決方案,滿足企業在不同場域的應用需求;而以下將自「智慧城市災防應變」、「智慧政府民意陳情資料分析」兩大應用情境為例,向大家介紹意藍如何為合作夥伴實現AI落地應用。

意藍AI Search智能搜尋解決方案

協助智慧城市災防應變數據分析
面對嚴峻的自然災害挑戰,災害防救單位需快速且準確地掌握災情資訊,提升災害應變效率。而意藍透過先進的AI技術,結合社群輿情資料和專屬的歷史數據庫,為災害防救單位提供高效的解決方案,解決資訊來源分散、數據處理繁複等痛點,協助單位提升資訊處理效率,並提供數據支持決策判斷,以便更好地應對和管理災害風險。分項說明如下:
[AI結合社群輿情資料,協助城市災防治理 – 分析儀表板]

為即時蒐集社群輿情中的災情資訊,意藍擷取分析眾多公開網站頻道的資料源,涵蓋各大公開媒體、Facebook粉絲團、Dcard、巴哈姆特各地區版、Mobile01地區版及PPT地區版等等,將巨量資料結構化並過濾之後,透過意藍的搜尋引擎,便可針對大量資料做搜尋。

接著,透過語意分析技術,讓AI自動判別每一篇災情文章內容中提及的地理資訊、災害事件以及災情程度等,將這些重要詞彙辨識出來並自動標記。

最後,將這些社群輿情中的災情內容與AI自動標記之結果,展示在分析儀表板上,讓災害防救應變相關單位可以利用搜尋快速找到相關內容,並從儀表板了解與統計各個地方民意反映的災情狀況、發生頻率等等,以利後續分析和災防治理。

[AI結合歷史數據,協助應對自然災害 – 歷史災害事件問答]

配合災害防救單位之需求,意藍利用生成式AI與自然語言模型,整合歷史災害防救數據,結合eLAND的AI Search For KM服務,建立災害防救事件問答系統,幫助災害管理或救援人員應對自然災害的挑戰。

災害防救單位可針對歷年災害事件做問答,AI Search for KM系統會依據提問找到多個參考段落,再由大語言模型綜合歸納出完整的答覆。以下為幾個問答情境:
  1. 山竹颱風在哪些地區有較大雨勢?
    AI Search for KM 回覆:根據提供的文章資料,我們可以得知山竹颱風在【文章A】、【文章B】和【文章C】中提到了有較大雨勢的地區。在這些文章中,指出受颱風外圍環流影響,花蓮、台東、屏東縣(山區、恆春半島)將有較大雨勢發生。此外,【文章C】也提到了台灣東部、屏東縣(山區、恆春半島)及南投縣、高雄市山區也將有較大雨勢發生。因此,根據這些文章的資訊,山竹颱風預計會在花蓮、台東、屏東、南投和高雄等地區帶來較大的雨勢。
  2. 梅姬颱風對台東造成什麼災情?
    AI Search for KM 回覆:梅姬颱風對台東造成了顯著的災情,包括淹水、道路坍方和農業損失。根據【文章F】,台東縣知本溪流域溫泉橋上游左岸堤防溢堤,導致溫泉村40戶民宅淹水,而右岸山坡則有雨水夾帶土石沖入富野飯店,民宅內土砂淤積達50公分以上。此外,梅姬颱風也對台東及屏東部分地區造成淹水和道路坍方,農業損失約1.9億元,並造成12人受傷。這些災情反映了梅姬颱風對台東地區的嚴重影響,包括對居民生活、基礎設施和農業的破壞。
  3. 梅姬颱風會對哪些地區影響較劇烈?
    AI Search for KM 回覆: 梅姬颱風對臺灣的影響最劇烈的地區包括臺北市、新北市、桃園市、新竹縣市、基隆市、花蓮縣、臺東縣、屏東縣、高雄市、臺南市、嘉義縣市、雲林縣、彰化縣及澎湖縣。這些資訊來自於【文章G】,其中明確指出這些縣市為梅姬颱風風災高風險區。此外,【文章H】 也提到梅姬颱風10級風暴風圈主要通過的縣市包括花蓮縣、臺東縣、屏東縣、高雄市、臺南市、嘉義縣市、雲林縣、彰化縣、南投縣、及澎湖縣,這進一步確認了上述地區將受到較劇烈的影響。這些資料綜合顯示,梅姬颱風將對臺灣南部、東部以及部分中部和北部地區帶來顯著的風災和降雨影響。
智慧政府民意及民眾陳情資訊分析
地方政府經年累月從派工系統、話務系統、人民陳情與市長信箱等來源接獲的民眾陳情資料相當龐雜,無論是市府人員後續欲整理民眾陳情資料進行分析,或是借鑒過往民眾陳情案件的回覆用於新案件回覆,皆費時費力;因此,意藍運用AI技術,提供市府陳情儀表板與陳情問答輔助解決方案,協助地方政府得以更有效分析資料及輔助陳情回覆 。分項說明如下:
[AI語意分析結合資訊結構化處理 – 陳情儀表板]

整合各來源資料,並透過意藍DeepNLP技術,分析民眾陳情情緒、擷取陳情內容特徵資訊等,整理成結構化資訊。

接著,採用意藍搜尋引擎技術,讓使用者可以藉由彈性的檢索條件快速查詢到想了解的特定陳情案件。

最後則進一步將結構化後的陳情資料整合成儀表板,提供視覺化圖表供使用者可以快速、清晰的了解案件概況與量化數值,並應用於後續分析。

[AI智能問答 – 陳情客服輔助]

在此項解決方案中,政府單位人員可直接輸入收到的民眾陳情內容,陳情問答輔助服務會先去除其中的個資及敏感資訊,嚴格控管資安不外洩,再將陳情內容清整後與過往陳情案件進行比對,獲取與本次陳情相關、過往曾經處理過的案件資訊,並透過生成式AI整合後產出AI自動回覆模板,輔助政府單位人員更有效率的回覆陳情案件,提升客服效率並減輕人力負擔。

此外,意藍的陳情客服輔助服務也具備以下特點:
  1. 回覆模板有依據
    服務會自動參考過去相關案件的回覆,以過往的回覆格式與內容為參考,產出適合的回覆內容提供給使用者
  2. 自訂聯絡資訊
    在產出的回覆模板中,使用者可以自己彈性設定應在回覆中顯示何種聯絡資訊
  3. 自訂單位名稱
    在產出的回覆模板中,使用者也可以自行設定在回覆中欲呈現的單位名稱資訊

意藍 (6925)將生成式AI與自身核心技術結合,提供多元的AI Search智能搜尋解決方案,賦能合作夥伴,實現了AI技術在智慧城市災防應變,以及智慧政府民意及民眾陳情資訊分析的落地應用,為AI未來城市發展注入新的動能。

想進一步了解更多意藍AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

精華文章掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

掌握檢索增強生成技術,強化企業應用AI的價值:
意藍在RAG的應用與展望

AI技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討RAG檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰
生成式AI在生成內容時,可能會出現杜撰答案或是答非所問等AI幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:
  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但RAG檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。
除了具備以上優勢外,一個好的RAG檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:
  1. 無檢索結果時的回覆
    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。
  2. 生成回覆內容的實用性
    檢索增強生成需確保生成之內容不僅與檢索到的知識相關,且還需具備流暢性、準確性及實用性。
  3. 效率和擴展性
    隨著知識庫不斷擴大,檢索增強生成需維持檢索和生成過程的效率與精準度。
  4. 實際應用彈性
    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。
RAG檢索增強生成的應用場景
RAG檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:
  1. 問答系統
    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG檢索增強生成能提供更精準及可靠的解答。
  2. 智能對話系統
    對話系統通常需結合大量知識來回答使用者的問題,RAG檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。
  3. 知識檢索及擴充
    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。
  4. 知識管理
    RAG檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。
RAG檢索增強生成的應用實例
而RAG檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:
  1. 輿情分析
    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容做為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。
  2. 財經分析
    在金融領域,RAG檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。
總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合RAG檢索增強生成的發展優勢
RAG檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為RAG檢索增強生成出色與否的重要因素。 而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的RAG檢索增強生成服務體驗。 此外,擁有RAG檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了RAG檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。
意藍於檢索增強生成的應用
而意藍資訊在RAG檢索增強生成主要有以下應用:
  1. 訓練大語言模型
    意藍自行研發並訓練了大語言模型eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強RAG檢索增強生成中對於參考相關資訊的摘要及回答的能力。
  2. AI Search for KM新一代生成式AI知識管理系統
    我們將RAG檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代生成式AI知識管理解決方案,提供使用者更高效、智能的知識搜尋與問答服務體驗。
  3. AI輿情應變顧問
    將RAG檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供AI應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。
意藍 AI 技術的未來展望
我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的RAG檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過RAG檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過AI技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

想進一步了解更多意藍AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

Copyright eLAND Information Co., Ltd.