<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/09</span>意藍於「2024未來經理人」展示生成式AI知識管理3大導入指標 及如何藉此提升企業競爭力

2024/09意藍於「2024未來經理人」展示生成式AI知識管理3大導入指標 及如何藉此提升企業競爭力

意藍資訊(股票代號:6925)總經理楊立偉博士,受邀擔任「2024未來經理人年會」講師,向與會菁英們分享如何透過善用大語言模型(LLM)的理解能力,讓結合最新生成式AI技術的知識管理系統為百工百業所用,有效提升知識工作者效率。

數位時代於9月11日舉辦2024未來經理人年會–全員AI 激發團隊十倍生產力,邀請到各科技領域頂尖領袖,與台下超過600位經理人從實務應用角度,交流能如何透過人工智慧在組織、任務、人員管理等層面有效賦能企業,提升產能。

楊博士在會上首先點明知識管理在既有導入流程上的困境:包括在「整理知識」階段,各類型檔案分散難以集中,整理過程耗時費力,而「使用知識」階段,更遇到知識點查找不易、無從下手,或是難以設定存取權限等實務應用時容易遇到的門檻。而結合生成式AI的知識管理系統,能透過AI協助進行檔案分類、內容貼標,並且自動化繪製知識地圖,甚至能做到個人化推薦,對於個人和企業長期發展至關重要。

至於什麼應用情境更適合導入知識管理?楊博士表示可透過組織內的「知識量」、「知識變動率」、「知識用量」三大指標衡量必要性,其一指標較高則應優先導入;而在四大象限中又以市場行銷、資訊技術、研發創新、營運管理等情境的導入更為急迫。

有效的知識管理,能協助企業改善營運效率、提高決策品質、加速經驗傳承與創新,而新一代的生成式AI知識管理解決方案,充分利用了LLM的理解與規劃能力,以自然語言成為各項任務的助手。

意藍資訊在場外攤位展示了在AI管理領域的應用成果,如AI Search for KM新一代生成式AI知識管理系統,便是結合生成式AI、搜尋引擎、NLP技術,並且符合企業權限與資安稽核的檢索系統,除了使用者能夠直接上傳多種格式檔案、設定存取權限,更能與口語化問答進行知識查找,克服既有知識管理流程的各項困境,成功提升組織作業效率達40%以上。

AI Search for KM新一代知識管理系統5大特色:

✔️支援多種格式資料
✔️支援口語化文字問答及全文檢索
✔️具備權限控管機制
✔️可地端/雲端運行
✔️符合企業資安標準

 

感謝在「2024未來經理人年會」前來與意藍一同交流新型技術與實際應用場域的貴賓們!未來我們也會致力於透過AI技術為企業提升營運效率、解決商業問題,持續推出更多創新解決方案,成為企業智能轉型的重要合作夥伴。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

精華文章掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

掌握檢索增強生成技術,強化企業應用AI的價值:
意藍在RAG的應用與展望

AI技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討RAG檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰

生成式AI在生成內容時,可能會出現杜撰答案或是答非所問等AI幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:

  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但RAG檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。

除了具備以上優勢外,一個好的RAG檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:

  1. 無檢索結果時的回覆

    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。

  2. 生成回覆內容的實用性

    檢索增強生成需確保生成之內容不僅與檢索到的知識相關,且還需具備流暢性、準確性及實用性。

  3. 效率和擴展性

    隨著知識庫不斷擴大,檢索增強生成需維持檢索和生成過程的效率與精準度。

  4. 實際應用彈性

    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。

RAG檢索增強生成的應用場景

RAG檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:

  1. 問答系統

    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG檢索增強生成能提供更精準及可靠的解答。

  2. 智能對話系統

    對話系統通常需結合大量知識來回答使用者的問題,RAG檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。

  3. 知識檢索及擴充

    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。

  4. 知識管理

    RAG檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。

RAG檢索增強生成的應用實例
而RAG檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:
  1. 輿情分析
    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容做為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。
  2. 財經分析
    在金融領域,RAG檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。
總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合RAG檢索增強生成的發展優勢

RAG檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為RAG檢索增強生成出色與否的重要因素。

而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的RAG檢索增強生成服務體驗。

此外,擁有RAG檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了RAG檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。

意藍於檢索增強生成的應用

而意藍資訊在RAG檢索增強生成主要有以下應用:

  1. 訓練大語言模型

    意藍自行研發並訓練了大語言模型eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強RAG檢索增強生成中對於參考相關資訊的摘要及回答的能力。

  2. AI Search for KM新一代生成式AI知識管理系統

    我們將RAG檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代生成式AI知識管理解決方案,提供使用者更高效、智能的知識搜尋與問答服務體驗。

  3. AI輿情應變顧問

    將RAG檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供AI應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。

意藍 AI 技術的未來展望
我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的RAG檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過RAG檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過AI技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

想進一步了解更多意藍AI技術嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>新一代生成式AI知識管理系統 AI Search for KM介紹說明(影片)

精華文章新一代生成式AI知識管理系統 AI Search for KM介紹說明(影片)

新一代生成式AI知識管理系統
AI Search for KM介紹說明(影片)

意藍新一代生成式AI知識管理系統AI Search for KM,結合了生成式AI、搜尋引擎和NLP技術,為企業組織提供了全新的知識管理解決方案,更加地容易上手使用。本次我們便以影片形式來為大家介紹,AI Search for KM如何協助各企業或機關單位快速檢索和應用組織內部的重要知識,解決傳統知識管理中的痛點,提升工作效率和資料安全性。

影片精華

企業知識管理常見痛點

知識管理對於企業來說至關重要,可以協助企業內部的專業知識得以保存、傳承、優化,維持企業競爭優勢。然而現今普遍的企業知識管理系統仍存在幾個常見的痛點:

  1. 學習企業知識庫並進一步內化所產生的人力成本過高

  2. 知識的運用不夠自動化、搜尋不夠智能化

  3. 系統不好上手

  4. 無法區分部門/層級權限

>>詳細痛點剖析,請見AI Search for KM 基本介紹0:23
AI Search for KM服務五大特色

AI Search for KM 是一款新一代的生成式AI知識管理系統,具有以下五大核心特色:

  1. 支援多種格式

    包括PDF、Microsoft Office等多種職場常見的檔案格式,滿足各組織單位需求

  2. 權限控管機制

    可針對不同部門和機敏資料進行權限管控,確保資料安全性

  3. 支援全文檢索

    支援全文檢索功能,讓使用者能夠輕鬆快速地找到所需資訊

  4. 支援口語問答

    支援口語化的對話問答功能,提升使用者操作便捷性

  5. 可選擇地端/雲端運算方案

    可根據單位需求選擇部署在地端或雲端,兼顧安全性與效能

>>詳細服務特色說明,請見AI Search for KM 基本介紹2:22
AI Search for KM應用情境

AI Search for KM 在產業中的應用情境廣泛。例如,在知識檢索方面,AI Search for KM能夠精準引用企業知識庫中的資料,提供使用者準確的答案和資料來源,從而提高搜尋效率和可信度。此外,在對話問答方面,AI Search for KM能夠以口語化的方式回答使用者提問,降低使用者的學習成本,提升使用者體驗。

>>詳細 是非問答/名詞解釋/情境問答 應用情境,請見AI Search for KM 基本介紹5:20
AI Search for KM vs 一般生成式AI

有別於一般的生成式AI,AI Search for KM有著更多的優勢。首先,在資料準確性與可信度方面,AI Search for KM能夠根據企業建構的知識庫提供準確的答案和資料來源,避免因不實際資料而產生的錯誤或幻覺。再與一般常見的生成式AI如GPT-4相比,透過提供組織專屬的資料給AI Search for KM ,系統便可以根據專業領域知識來精準回覆,不限於網路公開資料。

>>詳細說明AI Search for KM與一般生成式AI差異,請見AI Search for KM 基本介紹7:29
AI Search for KM服務導入方式

想導入AI Search for KM服務,首先需要評估並整理組織內部的資料庫與知識文件,確定哪些內容是重要且需要被整合進系統的,下一步即可根據組織的需求選擇 Web Service API,或是線上可登入的服務平台等方式來導入服務,並進行生成式 AI 等參數設定,之後使用者便可以直接開始使用 AI Search for KM 來進行知識管理!

>>詳細說明AI Search for KM 服務導入方式,請見AI Search for KM 基本介紹8:18

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>拆解生成式AI知識管理系統如何克服組織的KM痛點​

精華文章拆解生成式AI知識管理系統如何克服組織的KM痛點​

拆解生成式AI知識管理系統如何克服組織的KM痛點

生成式AI的應用是當前知識管理領域的一個重要發展方向,其應用範圍與情境更是廣泛。本文將剖析各類組織常見之知識管理痛點,並說明AI Search for KM具體提供之協助與達成效益。

本期 AI 知識庫亮點

生成式AI於知識管理應用上的發展趨勢?

生成式AI結合知識管理之重點優勢
新一代知識管理系統結合生成式AI,可以發揮的重要技術優勢便是利用AI優秀的語言理解能力,可回答問題、以及自動生成內容,讓使用者更輕鬆的找到問題相關的參考知識、吸收內容中知識點,大幅提升知識工作者的效率,進而提高知識管理的效益,方向上可歸納為以下要點:
  1. 知識重點摘要與生成
    生成式AI可以自動化彙整與問題相關的參考文本資訊,幫助使用者更有效地吸收文本知識。
  2. 24小時隨時服務
    基於生成式AI的智能知識搜尋與問答系統可以提供即時的、準確的問題回覆,有助於協助員工隨時隨地解決業務中遇到的問題。
  3. 問答體驗更人性化、高效
    生成式AI不僅能夠理解語言的語意,還可以更好地處理多樣性的自然語言表達,使知識服務更加貼近使用者的需求。
生成式AI結合知識管理可能面臨之挑戰
而關於生成式AI在知識管理應用上可能會遇到的挑戰及問題,則包含:
  1. 機密性和資安風險
    對於許多組織而言,使用生成式AI相關服務時容易有外洩機密、資安等疑慮,甚至因此頒布生成式AI工具禁令,即是為了防範此問題發生。
  2. 答非所問或錯誤解答
    生成式AI模型本身對於其未訓練過的資料,可能會出現杜撰答案或是答非所問的狀況,無法控制AI生成結果之可信度,也缺乏標示資料來源。
  3. 微調領域模型成本高
    一般的生成式AI模型可能無法回答特定領域的知識,需要透過模型微調 (fine-tune) 才能使其具備一定程度的領域知識回答能力;不過微調模型所需投入的人力、機器設備等方面成本皆較高。
  4. 系統整合不易
    要將企業內部知識管理系統內留存的知識,與生成式AI模型進行串接整合,中間牽涉到技術、成本等問題,整合過程不容易且缺乏經驗。
總體而言,生成式AI在知識管理中的應用前景廣闊,但組織應該謹慎應對機密性和資安問題,同時確保模型的合理使用,並以活化企業既有知識,最大程度地發揮其效益並降低潛在風險。

新一代生成式AI知識管理系統之情境案例

而新一代生成式AI知識管理系統,又是如何發揮上述優勢,同時克服生成式AI可能帶來的資安、杜撰答案等隱患呢?接著我們便以案例,來向大家說明新一代生成式AI知識管理系統如何成功為各類企業組織加值,透過AI智能進行知識管理。
剖析各類組織常見知識管理痛點

我們以實際使用新一代生成式AI知識管理系統 (AI Search for KM) 的客戶案例來看,當時該組織所面臨到的痛點有:

  1. 知識文件檔案量大,要找到所需的檔案文件需花大量時間,常常不知從何找起。
  2. 問題知識點散落於不同檔案文件之中,需要看過所有相關檔案才能完整的彙整、吸收其中的知識內容。
  3. 無法針對不同部門、不同層級間,所能接觸到的知識文件檔案、對檔案執行的動作(閱讀存取、編輯修改等)進行權限控管。

除此之外,過去市面上的知識管理系統多半只能透過關鍵字搜尋所有的檔案名稱是否命中關鍵字,需要使用者逐一自點開檔案、檢視其中內容,再以人工將不同檔案文件中的知識點自行消化整合,轉化爲問題的最終彙整知識內容。此外,市面上這種以搜尋為核心的知識管理系統,多半無法兼顧到組織對於檔案文件所需的權限控管機制。

AI Search for KM 具體提供之協助與效益
而新一代生成式AI知識管理系統 (AI Search for KM) 是如何解決上述企業知識管理痛點、貼近使用者需求? 透過結合搜尋引擎技術、能夠處理各種非結構的知識文件檔案,並提供整合權限控管機制的一站式平台,讓使用者可以透過單一平台找到所需檔案文件,同時滿足各類組織的機敏資料控管、部門權限劃分需求。

此外,再結合語意分析與生成式AI技術,AI Search for KM讓使用者以口語化文字提問,快速且精準的找到問題相關參考檔案,並進一步整合不同檔案中與問題相關的知識點,彙整為白話文字回覆,提升使用者體驗並加快取得知識點的效率,成功活化組織內部的知識管理生態。

最後,AI Search for KM可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,立刻就可以升級具有生成式AI的能力,並且可選擇使用雲端或地端大語言模型,可以部署在企業內部環境中,免除機敏資訊外洩的疑慮。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>為什麼企業需要導入以AI智能問答為基礎的知識管理?

精華文章為什麼企業需要導入以AI智能問答為基礎的知識管理?

為什麼企業需要導入以AI智能問答為基礎的知識管理?

知識是企業最寶貴的資源之一,它包括內部專業知識、流程和經驗,故建置完善的知識管理系統對於企業的長期發展相當重要。而意藍資訊AI Search for KM便提供了更先進、自動化程度更高,且使用者友好的知識管理系統,以AI賦能企業合作夥伴。

本期 AI 知識庫亮點

知識管理對企業的必要性是什麼?
新一代生成式AI知識管理系統(AISKM)是什麼?
企業如何有效整合現有資源到新一代知識管理系統?

知識管理對企業的必要性是什麼?

企業於知識管理上的常見痛點
2000年時期由Thomas H. Davenport教授發表關於知識工作者 (knowledge worker) 及知識社群 (knowledge community) 的一系列研究,加上Ikujiro Nonaka教授等人發表的顯性知識 (explicit knowledge) 及隱性知識 (tacit knowledge) 的轉換模型,帶動了企業對於知識管理的重視,進而投入知識管理系統,將企業知識留存累積起來,成為良好的基礎。然而二十多年過去了,在企業知識管理中,常見的痛點包括學習與內化企業知識的人力成本過高,以及知識庫的運作不夠自動化或不夠智能化、系統難以上手。
首先,學習企業知識庫並進一步內化所產生的人力成本過高,是許多企業在知識管理中所面臨的挑戰之一。傳統的知識管理可能會有資訊分散、版本過多的問題,需要員工自己進行彙整與吸收,因此對於需要調用企業知識庫來解決工作問題的員工而言,常會花很多時間搜尋、學習與內化,最後才能應用於工作上,導致企業相關人力成本偏高的痛點。
其次,知識的運用不夠自動化、搜尋不夠智能化也是另一個常見的問題。隨著企業資料量不斷增加,手動處理大量的知識資訊變得愈來愈困難,使用者可能在大量的文件中難以找到需要的資訊,或搜尋功能不夠智慧、精準,進而導致效率低下,無法即時應對快速變化的商業環境。 最後,系統不好上手也是一個普遍的問題。傳統知識管理系統通常缺乏互動性,且系統複雜難懂,需要員工接受長時間的培訓才能夠熟練使用。
導入新一代生成式AI知識管理系統的優勢
而要想解決上述企業知識管理上的問題,關鍵便在於找到可以有效降低人力成本、提高操作效率,同時確保員工能夠輕鬆上手,從而打破企業內的資訊孤島。故引入生成式AI知識管理系統,對於企業的優勢便在於提升知識管理的效率和效益,讓企業先前對於大量投入所累積的知識,能夠充分地活化運用。
新一代生成式AI知識管理系統,可以快速查找到與問題相關的檔案文件,並以簡單易懂的語句進行提問及回覆,協助使用者彙整、內化其中知識點,從而節省人力資源、加速知識內化過程。再加上生成式AI在自然語言處理能力上的強項,支援使用者口語化問答,讓使用者體驗 (User Experience) 更加自然與直觀,不僅易上手、減輕員工學習負擔,促進了更廣泛的系統應用。

新一代生成式AI知識管理系統(AI Search for KM)是什麼?

AI Search for KM 基本介紹
意藍資訊「新一代生成式AI知識管理(AI Search for KM)」不同於傳統知識管理系統,整合了生成式AI、搜尋引擎,和NLP技術(自然語言處理),讓使用者可以更輕鬆地檢索和應用企業有價值的知識。 就像在跟真人聊天一樣,只要企業把文件或資訊存入AI Search for KM 的資料庫中,當有問題或需要特定的知識時,只需要透過簡單易懂的白話文進行提問,使用者便可快速獲得所需的知識,避免繁瑣的搜尋或閱讀大量文件。此外AI Search for KM可專注於企業自身所建構的知識庫,並在提回覆使用者時顯示所引用的知識庫資料,確保回答能基於實際數據和企業內部知識,避免生成式AI因不實際資料而產生的錯誤或幻覺。
AI Search for KM 五大核心特點

意藍資訊所推出的「新一代生成式AI知識管理(AI Search for KM)」有五大核心特點:支援多種格式、權限控管機制、支援全文檢索、支援對話問答、支援地端/雲端。

  1. 支援多種格式

    支援企業常用的各種檔案格式,包含docx、PDF、xlsx、csv、OpenOffice 3.x 等格式,滿足企業檔案格式需求。

  2. 權限控管機制

    讓使用者僅能查詢到具有檢視權限的檔案文件資料,避免資料洩露,以滿足企業管控機敏資訊、劃分部門權限等需求。

  3. 支援全文檢索

    提供廣泛且彈性的資料檢索範圍,除了檔案文件的標題與內文之外,作者等資訊也在資料檢索範圍內,使用者可自行選擇欲檢索的範圍。

  4. 支援對話問答

    支援使用者以對話式問答,對文件知識點提問,系統會根據使用者提出的問題與相關參考資料,回傳彙整後的口語化回覆,讓使用者可以輕鬆上手。

  5. 支援地端/雲端

    可配合單位需求選擇地端或雲端服務。支援多種生成式AI的大語言模型 (Large Language Model,LLM),從先進的OpenAI GPT、到開源的Meta Llama 2,或是意藍經由大量本地語料調校而成的地端模型,可以選擇性地部署在企業內部環境中,避免了知識外洩的安全疑慮,同時又能兼顧高效能及準確性。

企業如何有效整合現有資源到新一代知識管理系統?

2步驟輕鬆完成評估與整合設定

最後,企業又可以如何有效整合現有的知識庫到新一代生成式AI知識管理系統中呢?我們可以先採取以下步驟:

  1. 評估現有知識庫

    了解企業內部現有的知識庫,包括其結構、格式、內容和涵蓋範圍,以確定哪些部分的企業知識是重要,且應該被整合的。

  2. 導入新一代知識管理系統

    將企業現有知識庫與新一代生成式AI知識管理系統整合,並根據企業的要求和知識庫的內容,進行生成式AI模型的相關參數設定,確保使用者可以迅速且精確地檢索到相關知識,取得簡單易懂的正確內容,提升系統的實用性與使用者體驗。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

Copyright eLAND Information Co., Ltd.