AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

用 AI Agent 整合數據,快速選出最佳影響力合作對象

在行銷策略中,挑選合適的 KOL 已成為重要且關鍵的決策,因為合作對象不僅影響品牌曝光,也牽動後續成效。然而若缺乏 AI 協助,行銷團隊往往需要自行到 IG、YouTube、Dcard、PTT 等多個平台搜尋資料,且不同團隊或成員之間的判斷標準(如按讚數、留言數、內容調性、受眾輪廓等)也可能不一致,使得挑選 KOL 成為耗時且主觀性高的作業。

OpView AI Agent 的價值不僅是「能回答問題」,而是能替使用者跑流程、整合資料並生成比較報告,讓行銷人員能用一致、可量化的方式進行決策,有效降低人工比對的時間。

▲ OpView AI Agent 應用服務

使用者可透過圖示化問答介面,自行輸入問題,或選擇系統提供的情境按鈕,如「KOL 分析」、「主題趨勢」、「廣告投放」等。AI Agent 會根據不同情境調用最合適的分析模組,串接站台資料生成重點摘要與建議,幫助使用者快速掌握資訊核心、輿情變化與行銷機會。

AI Agent 在醫美產業的應用:以數據輔助 KOL 決策

以醫美產業為例,品牌方在挑選 KOL 時,通常需要同時檢視多項指標,例如過去在相關主題上的發文內容、平均互動表現、受眾輪廓,以及是否曾出現負面回饋或爭議紀錄。過往這些資訊往往需要行銷人員分別在不同平台上手動搜尋與比對,耗時又不易掌握全貌。

但使用 AI Agent 時,行銷人員只需輸入關鍵條件(主題、平台、期間),系統便會:

  • 抓取跨平台資料(Dcard、IG、PTT 等)
  • 計算聲量與互動指標(平均按讚、留言、Keyword 呈現等)
  • 建立候選清單
  • 產出推薦理由與比較依據

這讓行銷團隊可以一次看到「多位 KOL 的比較表格」,快速理解誰最適合合作。

此外,AI Agent 會同時提供推薦依據,例如:相關主題之平均貼文互動、討論熱點與常見問題,以及內容調性是否與品牌相符,讓使用者能以「資料為基礎」做判斷,而非僅依賴過往經驗。

▲ OpView AI Agent 問答示意圖

操作時,使用者可以選擇自行發問或透過系統預設按鈕進行問答。上圖是以自行發問的方式,請 AI Agent 分別提供不同社群網站各3位 KOL 作為參考清單,並根據判斷標準各推薦最合適的合作人選。透過此種方式,品牌便可以一次綜覽不同人選的合作效益分析,加速行銷決策效率。

金融情資零散難掌握?帶你了解金融機構如何用 AI 整合情報

金融機構在投資研究與風險控管中,最常遇到的挑戰是「資料分散、資訊量大、判讀時間長」。在市場變動加快的情況下,決策速度往往受到資訊處理效率限制。
對此,意藍資訊推出以 AI Search 為核心的三大解決方案,包含「情報分析」、「智慧客服」與「輔助作業」,透過完整的 AI 落地應用架構,協助金融機構提升作業順暢度與決策品質。
在本期電子報中,我們將聚焦於「情報分析服務」的應用,藉由案例說明 AI Search 解決方案在投資與風控作業流程中扮演的角色及其價值。

在金融機構內部,投資情報研究與風控單位的第一線人員於日常作業中,經常面臨以下四大難題:

  1. 資料來源分散,變動頻率不一
  2. 資訊龐雜,人工統整效率低
  3. 文件內容複雜,人工判讀耗時
  4. 難依個人業務需求,進行客製化彙整與應用

意藍整合 AI Search、語意分析模型與多來源資料庫,協助逐一解決上述難題,打造可同時支援投資研究與風控作業的智慧情報平台。平台系統整合公司資本結構、財務報表、即時公告、新聞、法規等關鍵資訊,單位人員僅需於單一平台內操作,即可進行跨來源資料的檢索與分析,獲取一致且即時的資訊。

首先,在投資情報服務應用中,平台內彙整企業基本資訊、財務報表與社群輿情等多來源資料,自動生成視覺化圖表,協助投資人與分析師快速掌握企業經營狀況與市場波動,進一步判斷新聞對公司股價的正負面影響與幅度。

▲智慧情報平台系統「投資情報」應用示意圖

而在風險控管方面,平台則會在多來源資料中自動偵測可能影響企業的異常訊號,並透過語意模型比對關鍵變化,生成分析與預警訊息,讓風險管控由過往的「被動查詢」轉為「主動偵測」,提供單位更即時、更精準的分析結果,提升面對事件的預警速度與應對效率。

▲智慧情報平台系統「風控情報」應用示意圖

透過整合多來源資料並以語意模型協助解讀,AI Search 讓金融作業流程更接近「即時決策」。資料取得與分析速度的改變,也逐漸重塑金融單位的工作方式。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 如何思考?從大語言模型看懂它的「腦內運作」

生成式 AI 是人工智慧(AI)技術的一個重要類型,而大型語言模型(Large Language Model, LLM)則是目前生成式 AI 在文字生成領域的核心技術基礎。以下將以精簡的內容,帶讀者快速了解三者的關係與運作方式。

人工智慧技術概述與生成式 AI 的定位

人工智慧(AI)包含多種模型與學習方法,各自負責不同任務。常見的 AI 學習方式包含:

  1. 監督式學習:給模型範例和答案,模型從中學到具鑑別力的特徵,進行分類或預測。
  2. 非監督式學習:僅提供資料,不給答案,讓模型自行找出規律與特徵。
  3. 增強式學習:不提供資料,而是給予「目標」與「獎勵規則」,讓模型透過試錯找到最佳策略。

生成式 AI 作為 AI 其中一種類型,通常使用大量未標註資料,讓模型學習語言或內容的分佈與規律,進而生成新的文字、圖像或音訊,不僅能分類或預測,還能解決問題與執行多樣任務。

生成式 AI 的語言生成技術基礎:大型語言模型(LLM)

在文字生成領域,生成式 AI 的核心技術之一是大型語言模型(LLM)。
LLM 會從大量文本資料中,自行學習「詞與詞之間」「句與句之間」的關聯與語言規律,並在收到使用者指令後,生成符合語意與邏輯的回應。
可以把 LLM 想像成「文字接龍」:

  1. 使用者先提供一段問題或內容(上下文)。
  2. 模型依據訓練資料學到的語言規律,預測「下一個最可能出現的字詞」。
  3. 一字一句生成,最後串成完整且連貫的回答。

相較於過去較為專職的自然語言處理(NLP)模型,大型語言模型具備三個主要優勢:

  1. 上下文理解能力更強:生成內容更有邏輯、連貫度更高。
  2. 多任務通用性:不需為每個任務打造不同模型,一個模型即可應付多種語言任務。
  3. 大量資料訓練帶來的知識廣度:掌握更多語法、語意與世界知識,提高回覆品質。

這些能力使 LLM 在許多應用中表現突出,例如:智能客服、文案創作、資料解讀與摘要等,都能藉由 LLM 達成自動化並提升效率。

生成式 AI 的挑戰:可信度與「幻覺」問題

儘管 LLM 能產生高品質內容,但在語言模型的統計運作特性下,仍可能出現「看似合理、實則錯誤」的回答,也就是常說的模型幻覺(Hallucination)。
原因在於:

  • 當模型遇到訓練資料中未出現或不確定的資訊時
  • 會依照語言規律「推測」答案
  • 而非查證或真正理解內容

因此在回答專業領域問題時,模型可能基於語料經驗生成答案,但缺乏真實的參考來源。

解方:RAG(檢索增強生成)技術

RAG(檢索增強生成)是一種補強大型語言模型回答可信度的架構。

為減少幻覺問題並提升回答可信度,近年興起檢索增強生成(Retrieval-Augmented Generation, RAG)技術,它結合了「資料檢索」與「生成式 AI」的優勢。RAG 的流程如下:

  1. 先向外部資料庫或文件進行檢索,取得相關且可信的內容。
  2. 再由模型依據取得的資料生成回答。

好處包括:

  • 減少憑空捏造的可能性
  • 讓回答更接近真實世界資料
  • 增強內容的可追溯性
  • 更適合企業知識庫、客服、法規查詢等具資訊正確性需求的應用情境

RAG 的概念不僅提升生成式 AI 的實務可靠度,也進一步拓展大型語言模型在產業中的應用範圍。

從人工查核到智慧偵查:AI 如何重塑金流分析效率

近年來,虛擬貨幣與數位資產市場快速發展,相關犯罪樣態日益多元。虛擬貨幣因具去中心化、匿名化與跨境流動性高等特性,使執法單位在偵查過程中面臨更大的挑戰。傳統依賴人工比對與文件查核的作業,不僅耗費大量人力與時間,也難以即時掌握複雜的金流脈絡。為提升偵查效能與準確度,政府機關積極推動數位偵查轉型,透過導入 AI 與大數據分析技術,強化資料運用與決策支援能力,逐步邁向智慧化執法的新階段。

為何偵查作業需導入 AI 技術?

隨著數位資產市場與虛擬貨幣交易蓬勃發展,相關犯罪手法與樣態也呈現多樣化趨勢,跨境交易頻繁、匿名性高且金流分散等,使執法單位面臨前所未有的挑戰。在偵查過程中,相關人員常需以人工從大量錢包地址與交易紀錄等資料中比對可疑關聯,而此種以人工比對與查核為主的偵查方式可能面臨的困難點包括:

  1. 資料分散、難以整合:交易紀錄散落於不同交易所,查找過程不僅費時,更仰賴交易所的主動配合。
  2. 人工查核耗時:偵查人員需自行分析金流紀錄與交易數據,工作量龐大且較難完全避免疏漏。
  3. 缺乏即時分析能力:傳統流程難以即時偵測異常金流或可疑關聯,易錯過最佳追查時機。
  4. 資訊視覺化不足:偵查人員需自行繪製幣流分析圖以呈現金流脈絡,難以快速掌握全局。

面對龐雜金流結構與快速變動資訊,導入 AI 與資料分析技術可協助自動化整合多源資料、提升金流比對與異常偵測能力,強化決策支援與案件研析成效。

AI 金流偵查系統建置成效

為回應上述挑戰,政府機關的相關單位近年積極導入 AI 技術,建置專屬的虛擬貨幣金流偵查系統,實現資料整合與分析自動化。意藍資訊作為台灣代表性的智能數據廠商,協助執行虛擬貨幣金流偵查系統專案,以下為技術基礎與應用效益:

  • 技術基礎與平台特性 
    系統以「AI Search for KM 新一代知識搜尋與知識問答系統及工作平台」為基礎,以 RAG 架構為核心,並整合搜尋引擎、向量資料庫、語意分析及大型語言模型,可針對特定領域資料進行理解與訓練,支援高精度的知識檢索與智能問答。且平台問答之回覆內容均可追溯來源,確保資料可靠性;同時,亦支援地端運行與權限控管,可以有效避免洩漏機敏資訊。
     
    在此基礎上,系統整合公開虛擬貨幣金流紀錄、內部案件資料及相關法律監理文件等,經結構化處理後形成資料庫,確保可依偵查任務需求調用對應資訊,最終建置出可於地端安全運行的「虛擬貨幣金流偵查系統」。
     
  • 核心功能與效益
    1. 核心功能:金流查詢
      採用 NL2SQL 技術,使用者可透過自然語言查詢交易紀錄,如詢問「這筆交易資金流向哪錢包?」系統便會自動轉換為查詢指令並回傳結果,並以視覺化方式呈現資金流向,大幅降低查詢門檻。此功能能夠節省資料比對與分析成本,縮短案件初步調查時間,提升分析準確性。 
    2. 核心功能二:偵查報告生成
      系統可根據過往相關之偵查與法律文件,自動生成偵查報內容並提供偵查建議,減輕人工彙整負擔,確保報告結構與語意一致,提升案件報告品質與流程效率 
    3. 核心功能三:偵查報告真偽驗證
      輔助驗證偵查報告真實性,根據實際數據與推論規則檢核報告內容,標示潛在錯誤或矛盾之處,強化報告可信度與司法採信力。

整體而言,透過此 AI 金流偵查系統的導入,偵查人員可直接以自然語言快速完成資料查詢、金流分析與報告生成,讓偵查流程更即時、精準、安全,顯著提升執法作業在效率、準確度與資訊安全三方面的表現,為虛擬貨幣相關的犯罪偵查提供全方位的支持。未來,此技術亦可延伸應用於其他犯罪樣態與偵查領域,推動執法作業邁向全面智慧化。 

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

AI Search 電子報 | vol.09 懂語言、懂決策,AI 如何重塑企業營運思維

AI Search 電子報 | vol.09 懂語言、懂決策,AI 如何重塑企業營運思維

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

AI 為什麼越來越懂你?揭開自然語言處理的進化關鍵

自然語言處理商業化應用

什麼是自然語言處理?

當你發現客服機器人能理解你的問題、甚至預測你的需求,背後的關鍵技術正是自然語言處理。

自然語言處理(Natural Language Processing,NLP)是人工智慧的一個重要分支,目的是讓電腦能夠「聽得懂」和「說得出」人類語言。不僅能理解語意,更能幫助企業洞察情緒脈絡,讓輿情分析不再只是冷冰冰的數字。

在自然語言處理的發展中,常見的技術包含:

  1. 語意分析:理解文句中的意圖、情感,例如意藍自主研發的 DeepNLP 深度語意分析模組,可進行情緒分析、文本摘要、屬性詞分析等。
  2. 語音辨識:將語音轉換成對應的文字內容,例如 Google 的語音輸入功能。
  3. 文本生成:生成自然且合乎語法的文字內容,例如 ChatGPT 的文字生成功能。
  4. 機器翻譯:將文本從一種語言轉換成另一種語言,例如 Google 翻譯。
意藍 DeepNLP 技術服務內容

意藍的 DeepNLP 語意分析模組是國內最早投入、商業化應用成熟的自然語言處理技術產品,能以深度學習技術解析非結構化文本,進行情緒與語意分析。

而 DeepNLP 技術也被應用在意藍的產品當中,其中 OpView 雲端資料分析服務會針對大量的輿情資料進行情緒分析,來理解文本中的情感,辨別出文本表達的情感是正面、負面或是中立,幫助企業了解輿情對產品、品牌或事件的態度,有助於調整行銷策略和危機應對。除此之外,透過 DeepNLP 技術還可以抓取文本中的重點資訊,進而掌握公眾關注的重點面向或事件,以制定相應的決策和宣傳方案。透過自動摘要則可以從文本中提取出重要的句子或段落,生成簡潔的摘要,有助於企業迅速理解和分析大量的文本資訊。 

 

大語言模型的興起與優勢

大語言模型的核心特點

隨著自然語言處理技術的成熟,下一階段的突破來自『大語言模型』的興起。大語言模型(Large Language Models,LLM) 是基於自然語言處理所發展的技術,能夠進一步理解自然語言文本,並生成各式各樣的內容,目前國際上較為知名的大語言模型包含

  1. OpenAI 的 GPT 系列
  2. Meta 的 LLaMa 系列
  3. Google 的 Gemini
  4. Gemma 系列

為推動 AI 在地化發展,國內也積極研發本土大語言模型,如意藍所發展之 eLAND GOAT。而大語言模型則主要有以下幾個核心特點:

  1. 大量的數據訓練:讓模型從大量文本數據學習語言知識。
  2. 上下文理解:能夠理解和生成上下文相關的文本,提供流暢的回覆。
  3. 應用場景廣:有別於過往的模型多只在特定領域表現良好,大語言模型可以用於多種自然語言處理任務上,例如:從自動客服到文件摘要,皆能展現強大語意理解力。
大語言模型對自然語言處理的強化

大語言模型的發展推動了自然語言處理技術的進步,透過持續的訓練模型,可以更強化自然語言處理的效果,包含:

  1. 語意理解能力更佳:能夠更準確地理解文本中的語意,從而提高自然語言處理系統的性能。
  2. 文本生成能力更強:能夠生成更自然、連貫甚至更貼合使用者需求的文本,在聊天機器人和文本生成工具等方面都有很大的應用潛力。
  3. 多語言處理能力更好:具備多語言處理能力,可以在多種語言之間,進行翻譯和語意的理解。
 

結合搜尋技術、自然語言處理與大語言模型,提升產品效果與體驗

近年生成式 AI 的出現,讓自然語言處理技術的應用範圍更加擴大。意藍將 DeepNLP 與大語言模型結合,並整合自家搜尋技術,讓多項產品的分析與互動體驗更及時、智慧。

  1. OpView:
    — 運用大語言模型的生成能力,提供 AI 摘要功能,讓使用者在進行市場輿情觀測與分析時,可以跳脫過往繁瑣的工作流程(例如:在框定議題範圍後,需人工逐篇檢視、吸收消化再整理成重點等耗時作業),更快速有效率地掌握議題與貼文的討論重點。
    — OpView 也結合數據優勢及 AI 理解能力,推出「AI Agent」,使用者以自然語句提問後,AI 會自動解析意圖、整合相關分析模組,串接站台資料進行處理,並生成重點摘要與建議,應用面向涵蓋 PR 危機、廣告投放、KOL 分析及行銷靈感等,協助使用者快速掌握所需資訊與重點內容。
  2. AI Search for KM:
    — 核心技術:結合 DeepNLP 技術、大語言模型以及搜尋引擎技術,打造企業知識搜尋與問答服務
    — 使用方式:使用者可以自然語言提問,系統會自動從文件資料找出最相關的內容
    — 回覆特色:由意藍開發的 eLAND GOAT 大語言模型彙整成可讀性高的答案,並附上資料來源供驗證,提升知識可信度與可追溯性
    — 效益:協助使用者快速取得精準答案,減少知識整理的時間成本

意藍結合 DeepNLP 技術與大語言模型,讓企業能更快速掌握市場輿情重點、整理知識內容,減少人工整理的時間與成本,進一步提升資料分析與決策的效率。

AI 導入供應鏈,優化決策與風險管理

延續上期電子報,我們介紹了由四大功能模組組成的 AI 智能決策循環,如何透過「整合、推論、生成、檢核」的流程,打造可持續運作且不斷優化的知識系統,協助組織有效解決管理與營運挑戰,並展示了金融業的導入實例。本期則將以食品製造業為例,解析 AI Agent 如何優化供應鏈管理與風險防範能力。

在製造業領域中,特別是食品加工與銷售這類高度重視供應鏈管理與品質控管的產業,AI 模型的導入已展現實質應用價值。透過一套完整的智能循環,企業不僅能更有效預防風險,也能提升日常營運效率與應變速度。

▲ 食品製造業 x AI 導入實務 流程圖

首先,在「動態監控與情報整合」階段,AI 可自動追蹤原料來源與供應商資訊,並即時監測國內外食品安全相關新聞與公告。一旦偵測到可能影響生產的事件,系統可主動提醒相關單位,協助企業及早介入,防止問題擴大;接著,「數據推論與關聯分析」模組能在潛在風險事件發生時,從歷史供應紀錄、批號與出貨去向等多源資料中,推論出可能受影響的產品範圍,協助企業更快做出召回或調整決策。

「內容生成與專業論述」部分,AI 可依據標準化格式,自動產生稽核報告、食品安全事件通報或供應商檢討報告,減少人工彙整的時間,讓第一線人員能專注於後續處理與溝通;最後,「品質維持與異常監測」模組則可跨系統比對出貨數與倉儲紀錄,檢查產品標籤與追蹤資訊是否一致,並從歷次稽核報告中學習潛在異常模式,再回饋至前端監控,形成持續優化的品質管理循環。

綜上所述,透過四大模組,包含情報蒐集、數據驗證、文件撰寫到品質控管,食品製造業透過使用 AI 架構,在供應鏈管理與風險控管上更為敏捷與精準,進一步提升企業的市場競爭力。不僅縮短決策時間,也強化了供應鏈透明度與品牌信任。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

經理人 x 中華民國對外貿易協會【中高階主管 AI 企業策略課程】
經理人 x 中華民國對外貿易協會
【AI 決策領導力課程】

意藍資訊總經理 楊立偉博士,率領資深商業分析師團隊,
分享從數據管理到生成式 AI 的實務應用,
助力企業掌握策略決策力與營運洞察。
立即前往觀看!

AI Search 電子報 | vol.08 AI 進化進行式:Active RAG 開啟智慧決策新格局

AI Search 電子報 | vol.08 AI 進化進行式:Active RAG 開啟智慧決策新格局

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

從被動搜尋到主動理解:Active RAG 開啟智能問答新時代

知識是企業組織日常運營不可或缺的一環,也在持續發展與價值創造中扮演關鍵角色。透過有效的知識管理,能夠累積並共享內部專業知識,進而減少重複性工作,促進跨部門合作、優化決策過程並提高運營效率。然而,傳統的知識管理方法往往面臨資訊分散、無法即時更新及搜尋效率低下等挑戰,使得企業在應對快速變化的業務需求時,可能需投入較多時間和資源以達成目標。

而檢索增強技術的出現,逐步突破了這些障礙,它結合了搜尋引擎快速檢索的優勢與大語言模型的生成能力,在生成答案前先檢索最新的相關資訊,以確保結果更可靠精準。意藍進一步開發了進階版本——主動式檢索增強生成技術(eLAND Active RAGᵀᴹ),以多回合查詢與動態優化機制,提升知識檢索的效率與準確性,為知識管理的應用提供新的可能。

主動式檢索增強生成技術如何重塑知識管理

認識eLAND Active RAGᵀᴹ ── 主動式檢索增強生成技術

eLAND Active RAGᵀᴹ(主動式檢索增強生成)是在RAG(檢索增強生成)的基礎上進一步升級的技術,具備以下核心功能特性,使其在知識管理中更具優勢:

  1. 內外部數據動態整合:

    eLAND Active RAGᵀᴹ 能根據問題性質,自動判斷最佳數據來源,從內部系統、資料庫以及外部網站等多元數據庫中進行查詢,並進行綜合分析,讓回覆結果能更多地參考最新資料來源,提升內容的相關性與完整性。

  2. 語義理解與推理:

    與傳統基於靜態關鍵詞的檢索方式不同,eLAND Active RAGᵀᴹ 能夠理解語句的語義,並依據問題的背景進行推理和回應,使結果更相關且精準。例如,對於問題「如何優化員工的工作流程?」,系統會理解問題的核心是提升工作效率,並基於此可協助產出具體建議,如檢視現有工具使用情況、導入自動化流程或改善跨部門協作等。

  3. 多回合查詢與自主優化

    eLAND Active RAGᵀᴹ 能根據已獲得之初步資訊動態調整查詢策略,多回合查詢以逐步完善答案,從而實現更深入的問題解決和分析。例如,對於「如何提升某產品市場佔有率?」的提問,在第一輪查詢時先自內部資料中提取產品的銷售數據,提供概括性分析;接著,再根據已取得的結果,進一步從外部資料庫提取相關細節,如競品的市場策略、消費者對產品的反饋等,於後續查詢中補充數據背景或上下文資訊。

導入主動式檢索增強生成技術對知識管理的影響

綜上所述,導入主動式檢索增強生成技術將對知識管理帶來深遠影響,主要體現在以下幾個方面:

  1. 提升數據整合能力,突破資訊孤島

    支援內外部數據的動態整合,能夠從企業內部資料庫、檔案系統到外部網站、公開數據源中提取所需資訊,並進行綜合分析,有效解決了傳統知識管理中數據分散、無法即時更新的難題。

  2. 增強問題理解與回應的精準性

    理解使用者提問的核心意圖,並結合問題背景進行智能推理,提供更精準且相關的答案,可提升知識檢索的效率,減少因資訊模糊或部相關造成的額外時間成本。

  3. 提升知識應用價值

    透過 eLAND Active RAGᵀᴹ,能將分散的資訊轉化為結構化且易於應用的知識,例如生成與決策相關的報告或建議方案,協助企業組織更有效地識別潛在機會或問題,縮短內部回應時間,並在資源配置上提供決策參考。

eLAND Active RAGᵀᴹ 在知識管理中的應用實例

意藍的新一代 GenAI 知識管理工作平台 – AI Search for KM 便結合了 eLAND Active RAGᵀᴹ 以及搜尋引擎、NLP與大語言模型等技術,協助使用者更有效地完成知識搜尋與問答服務,並可應用於多種情境,對複雜型任務具備一定的處理能力,以下將舉例說明。
當對系統提問「少子女化對社會產生什麼樣的衝擊?」,在 eLAND Active RAGᵀᴹ 的輔助下,系統將依循以下步驟進行運作,確保提供精準且有所依據的回答:

  1. 拆解任務及選用工具

    系統首先會將使用者的提問拆解為可執行的子任務,並根據問題性質選擇合適的工具與資料源。接著,這些子任務會被轉化為模型可處理的輸入參數,例如自動萃取關鍵詞、設定檢索條件(如時間範圍、產業分類)或生成語意提示,確保後續的檢索與分析更具針對性與效率。

  2. 生成輸入參數

    根據問題內容與選定資料庫,系統會再進一步生成適配的查詢參數,即設定一組適合用來搜尋資料的條件,並以設定之參數為基礎,啟動後續資料檢索過程。例如:

    – 關鍵字:少子女化、社會影響、政策、新聞、研究計畫。
    – 時間範圍:過去1年的相關資料。
    – 查詢格式:結構化的API請求或自然語言查詢。

  3. 解析輸出結果

    接著,系統會對檢索到的資料進行整理與分析,例如自少子女化相關的新聞報導中,統計出過去一年該議題的討論成長率,或是從研究資料中,彙整人口統計變化以及對社會經濟的具體影響點。

  4. 進行判斷及回覆

    最後,系統將檢視目前取得的資訊是否足以回答問題。若資訊足夠,系統會根據統計結果與分析,生成針對使用者提問的回答,如「少子女化對社會的衝擊包括勞動力減少、教育資源分配過剩及老齡化社會負擔增加等。」
    若判斷資訊仍不足,系統會自動重新進行檢索,並調整參數(如擴大時間範圍或查詢更多資料庫),透過多輪優化逐步補足所需資料。為了兼顧回答的完整性與運算效率,整個流程預設最多可進行三次迭代,以確保最終回覆的準確性與可靠度。

無論是企業組織或公部門單位,若導入 AI Search for KM 及 eLAND Active RAGᵀᴹ ,皆可望提升資訊處理的效率與精準度,金一步強化知識管理應用價值。

AI 導入授信流程,強化金融風控與決策效率

延續上期電子報,我們介紹了由四大功能模組組成的 AI 智能決策循環,如何透過「整合、推論、生成、檢核」的流程,打造可持續運作且不斷優化的知識系統,協助組織有效解決管理與營運挑戰,並展示了證券業的導入實例。本期則將以金融業為例,解析 AI Agent 如何融入授信業務流程,並在多元任務階段中的發揮價值,強化風險控管與決策效率。

在金融業中,處理大型企業的授信作業時,徵信與授信部門常需核對授信客戶的公司結構、財報異常及法規風險,並撰寫相關風險評估報告,而在這過程中,容易發生資料落差與審查疏漏的情況,因此可透過導入 AI 智能決策循環應對這些挑戰。

▲ 金融業 x AI 導入實務 流程圖

首先,在「動態監控與情報整合」階段,AI 可協助追蹤企業財報異常、主管機關公告以及信用異動,協助團隊更早識別潛在風險;接著,透過「數據推論與關聯分析」模組,AI 能夠自動交叉比對董監事名單、轉投資架構,計算出關聯度,降低授信集中風險,避免風控盲點;在「內容生成與專業論述」上, AI 可協助產出標準化授信草案及風險分析段落,讓核貸人員專注於關鍵判斷上;最後,「品質維持與異常監測」模組則負責檢核公告、報告與財報內容的一致性,協助提升資料的一致性與完整性,進而強化法遵與內控品質,降低合規風險。

▲ 內容生成與專業論述 AI 應用 示意圖

綜上所述,透過四大模組,包含情報蒐集、數據驗證、文件撰寫到品質控管,金融業透過使用 AI 架構,徵授信團隊能將更多時間投入在判斷與決策上,而非耗費在資料整理與比對,在提升工作效率的同時,也強化了整體風險管理能力。

11/5 (三) 意藍 AI Search 新品發布會🔥

意藍資訊將於 11/5 (三) 舉辦新品發布會,
結合資料萃取、智能分析與 AI 技術,推出全新 AI Search 解方,
助力企業升級數據力與決策力,全面掌握 AI 應用價值。
立即前往報名!

AI Search 電子報 | vol.07 四大模組打造 AI 決策循環,開啟企業新解方!

AI Search 電子報 | vol.07 四大模組打造 AI 決策循環,開啟企業新解方!

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

AI 智能決策循環:四大模組打造企業營運痛點新解方

本期報告摘錄意藍《年度 AI 落地案例一次看:企業決策與實務應用大解密》研討會精華,針對 AI Agent 在企業工作流程上的價值與應用面向進行說明,並對於企業經常面臨的痛點提出「AI 智能決策循環」解方,透過四種功能模組幫助組織運作智慧化。此外,本期也將透過證券業實際導入 AI 的案例,分享 AI 落地應用情境,揭示 AI 如何協助企業提升效率、降低風險。

AI Agent 價值與應用

從解決問題到主動串接 企業知識運用再升級

AI Agent 已由單純的問答工具,進化成能融入業務流程、主動執行任務的數位協作夥伴。企業透過導入 AI Agent,不僅能優化流程、提升效率,還能加速 AI 的落地,進而推動更全面的數位轉型。AI Agent 的價值體現在多元的企業場景,下方分享五種常見應用: 

  1. 智慧客服系統:協助民眾快速獲取資訊,減輕人力負擔、提升服務體驗。
  2. 內部客服助理:幫助客服人員即時查找內部資料,提升回覆效率與服務品質。
  3. 金融投資服務:分析新聞資訊對企業股價的正負面影響,提供投資人與分析師判斷依據。
  4. 金融風控情報:持續監測金融資訊,並且即時通報潛在風險事件與異常。
  5. 輔導作業助理:檢核文件的一致性,生成報告並分析潛在風險,全面提升作業效率。

由此可見,企業若能與 AI Agent 協作,將能強化決策力與市場反應速度,並在多元場景中展現價值。

AI 智能決策循環

動態機制驅動模組 自主檢核持續優化

AI Agent 展現了巨大的潛力,但若要讓它真正成為企業日常的一部分,必須先解決導入上的難題。在 AI 落地的過程中,企業最常面臨的四大挑戰是:「資料來源多且分散」、「人力不足」、「任務時效性高」以及「跨部門知識斷裂」。
針對這些痛點,意藍資訊提出由四大功能模組組成的 AI 智能決策循環,透過「整合、推論、生成、檢核」的流程,打造持續運作且不斷優化的知識系統,協助組織有效解決管理與營運問題。

▲ AI 智能決策循環 流程圖

在智能決策循環中,四大模組分別承擔不同任務。首先,「動態監控與情報整合」模組負責蒐集來自主管機關公告、新聞以及財務報表等外內部重要資訊,讓組織能即時掌握政策與產業的最新動態。接著,透過「數據推論與關聯分析」模組將蒐集到的資訊轉化為洞察,辨識其中的風險與機會,並進一步進行關聯分析與影響推論,協助決策者全面掌握資訊。

而「內容生成與專業論述」模組,則將前一階段的洞察落實為研究報告、簡報或 FAQ 等具體產出,使資訊能被傳遞與應用。最後,「品質維持與異常監測」模組會透過檢核與修正,避免產出的資料有誤或缺乏邏輯性,並將檢核後的結果反饋至監控端,使模型得以持續修正,形成自我優化的閉環運作系統。

針對以上 AI Agent 導入架構,在本期及往後兩期電子報中,我們將分別以證券業、金融業、食品業的導入實例進行應用展示。藉由產業案例解析,更清楚說明 AI Agent 如何融入不同產業的業務流程,以及在多元任務階段中的應用價值。

企業規範更新快、投資關係難辨識?AI 助證券業打造智慧流程

在證券業中,資訊的即時性與正確性十分重要,尤其對於承銷與輔導部門而言,從企業申報資料、產業政策更新到揭露文件,每一個環節都影響著申請上市的成功與否,以及風險控制。而透過導入生成式 AI ,組織不僅能減少人工作業的成本,也能在情報蒐集、資料比對與內容產出上實現自動化,提升工作流程效率。

▲ 證券業 x AI 導入實務 流程圖

首先,透過「動態監控與情報整合」模組,AI 會每日持續追蹤證交所公告、金管會規範與產業政策,讓團隊第一時間掌握能影響流程的變化,即時調整方向,降低潛在承銷風險。接著,在「數據推論與關聯分析」模組中,AI 藉由比對董監事名單與關係人清單,快速計算並推演出完整的企業結構與潛在關係人,揭示隱藏的投資結構,避免因資訊不透明造成的判斷偏差

▲ 數據推論與關聯分析 AI 應用 示意圖

此外,證券業亦能藉由「內容生成與專業論述」模組,請 AI 協助擬定公開說明書草稿與揭露重大風險,使組織得以讓專業人員專注於內容修訂與專業判斷等專業性工作任務,更有效運用人力。最後,應用「品質維持與異常監測」模組,AI 能協助組織自動比對申報文件、財務報表與公告內容的一致性,並透過即時標記功能,防堵錯誤或違規揭露的風險,確保資料的品質與合規性。

▲ 品質維持與異常監測 AI 應用 示意圖

綜上所述,透過四大模組,包含情報蒐集、數據驗證、文件撰寫到品質控管,證券業導入 AI 的應用實例不僅優化了部門運作方式,也大幅提升任務執行效率與風險管理能力,更展現出 AI 在金融專業領域的實用價值。

11/5 (三) 意藍 AI Search 新品發布會🔥

意藍資訊將於 11/5 (三) 舉辦新品發布會,
結合資料萃取、智能分析與 AI 技術,推出全新 AI Search 解方,
助力企業升級數據力與決策力,全面掌握 AI 應用價值。
立即前往報名!

AI Search 電子報 | vol.06 企業如何與 AI Agent 協作打造高效工作流程?

AI Search 電子報 | vol.06 企業如何與 AI Agent 協作打造高效工作流程?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

從理解到協作:AI Agent 為企業打造高效工作流程

前 2 年,企業導入 AI 主要用來回應問題或加快資訊處理速度。但自今年起,企業更期待 AI 能主動思考、完成多步驟任務,這也讓「AI Agent(AI代理)」成為新一代 AI 應用的核心焦點。不同於先前只能被動執行指令的 AI,AI Agent 具備自主感知、決策與行動能力,能像一位可靠的虛擬助理,協助你完成多步驟任務、主動分析資訊,甚至隨著使用次數越多越聰明。本文將帶你全面認識 AI Agent 的概念、運作流程與實際應用價值。

什麼是AI Agent(AI代理)?

AI Agent 定義 / 基本概念

AI Agent,是一種具備自主決策與行動能力的人工智慧系統。與傳統 AI 需要明確指令才能運作不同,AI Agent 不僅能理解任務本身,更能推敲背後的目標、從環境中感知資訊,並根據累積的經驗做出最佳決策;簡單來說,它不只是「能做」,而是「知道為何做、該怎麼做、接下來該做什麼」。AI Agent 通常具備以下四大能力:

  1. 目標導向(Goal-oriented):可以根據使用者指定的目標,自行規劃任務執行流程。
  2. 感知能力(Perception):能自外部環境或使用者互動中,擷取關鍵資訊。
  3. 記憶與學習(Memory & Learning):擁有記憶機制,可學習並累積過去的經驗,進一步優化未來表現。
  4. 自主行動(Autonomous Action):能主動採取行動,如呼叫 API、使用工具、完成多步任務等。
AI Agent 與一般生成式AI的差異

一般的生成式 AI 多半仰賴輸入指令來完成特定任務,例如當使用者輸入問題時,AI 便根據資料庫回傳答案。而 AI Agent 則更進一步強調「任務導向」與「自主規劃」,它不僅聽得懂指令,更能主動思考「要怎麼完成這項任務最有效率」。
舉例來說,如果你希望 AI 幫你撰寫一份市場報告,一般的 AI 應用能基於所學習過的知識來回應問題;而 AI Agent 則會主動搜尋多個資料來源、整合內容、過濾重複資訊,甚至回顧以往你提供的文字風格偏好,自動調整格式與語氣,自主性和靈活性大幅提升,真正成為一位可靠的虛擬助理

AI Agent 工作流程解析

隨著 AI Agent 技術成熟,其應用場景已從簡單的聊天對話,逐漸延伸到多步驟、跨系統的企業任務處理。以下列舉 5 個高潛力應用場域:

  1. 客戶服務:不只是回覆問答,AI Agent 更能記住過往對話脈絡、主動追蹤處理進度,甚至呼叫內部 CRM 系統查詢資訊。
  2. 推薦系統:透過 AI Agent,電商零售平台可根據使用者站內行為與搜尋內容,主動推薦合適商品,並整合庫存、優惠與物流資訊,提升購物體驗與下單意願。
  3. 法務工作:AI Agent 能支援提供案件摘要、撰寫法律文件草案、查找相關判例等任務,提升法務工作效率與準確性。
  4. 金融投資:即時分析市場資訊、監控資產波動,並根據個人投資偏好,提出個人化的理財建議,或執行條件式自動交易。
  5. 市場輿情分析與策略規劃:AI Agent 能接收開放式提問,自動檢索最新網路聲量趨勢、熱門關鍵詞等資料,生成結論或建議,協助企業快速掌握輿情風向與行銷重點。

綜上所述,AI Agent 的出現,象徵著企業 AI 應用邁入新階段,從被動使用工具,到擁有一位能主動協助任務的智慧虛擬助理。在生成式 AI 已成標配的當下,具備任務理解與自主執行能力的 AI Agent,正成為企業深化數位轉型的關鍵,透過減少重複性工作、加快決策流程、優化資源配置,AI Agent 能有效提升整體營運效能,為企業打造更高效、智慧的營運模式。

公共治理新利器:AI 在員額評鑑的應用效益

近年來,各級政府積極推動數位轉型,各種 AI 工具被廣泛導入於資料處理、行政作業與公共服務中,為智慧治理奠定了基礎。其中,「員額評鑑」是需要跨部會協作的大型作業,過程中必須整合來自不同單位的大量人事資料、並加以比對與分析,以作為人力配置與政策規劃的重要依據。這類作業流程在傳統做法多仰賴人工,往往需要投入可觀的時間與人力來完成,而隨著資料規模逐年增加,以及各政府單位對政策即時性與精準度的需求提升,如何運用新技術來提升效能,已成為重點發展方向。

為何員額評鑑專案需導入 AI 技術?

員額評鑑是人力配置與政策規劃的重要基礎,然而在傳統作業流程中仍存在一些挑戰,主要包含以下幾個面向:
  1. 資料分散與格式不一:各單位的人事資料往往分布於不同系統,各自採用的格式與欄位設計可能也不完全一致,因此在整合過程中需要額外的整理與比對步驟。
  2. 計算規則繁複:評鑑作業涉及缺額比率、配置比例等多種指標,每一項都需要依循特定規則計算,當數據量龐大時,往往需要投入大量人力與時間。
  3. 報告撰寫一致性:由不同人員撰寫的分析報告,常因表達方式或重點選擇不同,而在結構與呈現上存在差異,使得跨單位報告之間,雖各自完整,但難以直接逐項對照。
  4. 決策資訊延伸有限:傳統報告多偏重數字與表格呈現,雖能反映現況,但較少延伸至趨勢研判或策略建議等,若要做為高層決策時的參考依據,則需再投入額外時間進行解讀。
  5. 評鑑作業的持續性需求:員額評鑑不是單次作業,而是需長期推動與追蹤的核心管理機制,過程中必須同時參考當期數據、歷年人力發展計畫以及現行施政方針,進行跨期的比對與差異分析;若僅依靠人工,可能造成比對標準不一致或耗費過多時間。

員額評鑑專案採用 AI Agent 之效益

針對上述痛點,導入 AI 技術成為理想的解決方案。其中,「AI Agent」與一般仰賴接收指令、並自既有資料庫中搜尋回傳答案的生成式 AI 相比,具備了任務導向與自主規劃能力,不僅能進一步理解指令,還能主動拆解任務流程、規劃執行步驟,在更複雜的任務中發揮價值;而在公共治理的情境中,這樣的特性特別適用於員額評鑑這類需要跨部會協作、涵蓋資料龐大的任務。

意藍作為台灣代表性的智能數據廠商,便曾協助公部門單位執行員額評鑑之專案。在專案中,我們以 AI Agent 架構貫穿解決方案,並結合「自動化流程」與「大語言模型生成」,協助整合不同來源的資料、依規則完成計算與標註,進一步生成具體的分析與建議。

專案執行主要分為四個層面,各自帶來的效益如下:

  1. 資料整合與分類:透過自動化工具,將不同來源的員額數據表格與其他業務系統資料彙整成統一格式,並依照特定評鑑面向進行分類。這一步驟大幅降低了人工清理資料的時間成本,並確保後續分析的基礎更為穩定。
  2. 自動化計算與重點標註:系統依照既定規則,自動完成缺額比率計算,並即時以紅字粗體標註超過整體平均值的單位。這樣的標註機制能幫助決策者迅速聚焦於需優先關注的重點,而不必再逐一比對大量數據。
  3. AI 報告生成與摘要:借助大語言模型,將枯燥的數據轉化為文字敘述,自動生成完整報告。報告中不僅包含增減員因素分析,還能提出具體的改善建議與政策回應,例如留才策略、配置建議等,使報告真正具備決策參考價值。
  4. 共通性問題分析:除了單位別的數據與建議外,AI Agent 也能跨單位自動彙總共通性問題,並生成全域性的分析。這使得高層在制定政策時,不再只看到單點狀況,而能獲得更全面的參考視角。

綜上所述,AI Agent 的導入全面優化了員額評鑑流程,從資料整合、計算、報告撰寫到跨單位分析,都能以更高的效率及一致性完成,不僅減少人力負擔,更提升成果的決策參考價值,驗證了智慧公共治理中的 AI 應用潛力。

2025 AI 數據年會線上場
2025 意藍 AI 數據年會線上場 熱烈報名中!

線上場次即將在10/1(三) 舉行,
帶您一次掌握企業決策、產業應用、落地案例,
歡迎前往報名!

AI Search 電子報 | vol.05 企業不只部署 AI,該如何透過 Fine-tuning 找到最佳解?

AI Search 電子報 | vol.05 企業不只部署 AI,該如何透過 Fine-tuning 找到最佳解?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

不只是訓練,更是優化:Fine-tuning 在企業 AI 應用的角色

隨著 AI 技術的蓬勃發展,AI 大語言模型的應用也日益廣泛,從企業決策到內容生成,各行各業都在探索其潛力。然而,AI 模型有時無法準確回應特定需求,或因對特殊領域的知識有限而產生錯誤資訊,此時除了檢索增強生成(Retrieval-Augmented Generation,RAG)技術外,就需要透過 Fine-tuning(微調)技術來進一步優化、提升模型準確度。本文將帶您了解Fine-tuning的運作原理,並介紹其多元的應用與商業價值。

認識 Fine-tuning(微調)

什麼是 Fine-tuning?
Fine-tuning,也就是微調,是一種針對既有 AI 大語言模型進行優化的機器學習技術,透過調整模型權重,使其在特定應用場景下的輸出結果更準確、符合預期。Fine-tuning 保留基礎模型的能力,同時針對特定領域強化應答準確性,相比從零開始訓練一個新模型,大幅節省了開發所需的成本與時間。
為什麼需要 Fine-tuning?
現成通用的 AI 大語言模型雖然功能強大,但在特定領域如法律、醫療、金融、科技製造等產業中,可能無法精確理解專業術語或規則,甚至可能產生錯誤資訊,無法直接應對每個組織或企業的獨特需求。而透過 Fine-tuning,可以讓模型深度學習特定領域的知識、更準確地理解特定語境,進而提升整體專業性與應用價值,成為企業AI部署的重要步驟。
Fine-tuning 運作流程

Fine-tuning 的作業流程通常包括以下幾個步驟:

  1. 選擇預訓練(pre-train)模型

    根據企業組織的需求,選擇合適的 AI 大語言模型,如OpenAI GPT系列、Meta Llama系列、 國科會TAIDE模型、聯發科Breeze模型,或是eLAND GOAT模型等。

  2. 準備微調數據

    提供與任務或應用場景相關的資料作為模型的學習素材,如客服對話紀錄、法律文件、產品規格或研發文件、企業內部資料等,使模型能更準確地理解專業內容並優化回應品質。

  3. 調整模型參數

    透過微調數據對模型進行訓練,更新部分或全部數據資料的權重參數,使其更貼近企業應用場景的需求。

  4. 評估與優化

    藉由準確率(Accuracy)、召回率(Recall)、F1分數(F1 Score)等指標來衡量微調效果,並根據測試結果不斷進行調整與優化,確保模型輸出更符合使用者需求。

經過微調的AI模型,能夠更有效地應對高度定制化的需求,對於企業而言,無論在提升業務效率、改善客戶服務,或者優化內部決策過程中,都能發揮重要作用。

Fine-tuning 於企業中的應用

如前段所述,Fine-tuning 不僅是提升模型準確度的工具,更成為幫助企業提升營運效率、降低成本和創造競爭優勢的關鍵,以下進一步彙整 Fine-tuning 在企業中的三大應用價值:
  1. 增強企業專屬化服務
    透過 Fine-tuning,企業能夠調整 AI 模型的回應語氣、風格與內容,從而提供更具個性化的服務體驗。例如,在客服領域,企業可以根據不同客戶群體的特性、偏好或文化背景,調整模型的回應方式,進一步提升顧客滿意度;在科技製造業,許多特殊的產品規格、專業的用字及術語,都可以透過微調模型,讓研發人員在使用上更順暢。
  2. 提升專業知識掌握度
    Fine-tuning 可強化 AI 在特定領域的知識理解與應用能力,特別適用於法律、醫療、金融等高度專業的行業。例如,透過 Fine-tuning,使 AI 更熟悉特定的專利法條文與案例,不僅能幫助法律人員更快地檢索相關判例,還能協助草擬專業的法律文書,從而提高工作效率並確保法律建議的精準性。
  3. 提升業務流程的自動化與效率
    Fine-tuning 可根據企業的運營需求進行調整,使 AI 更精準地理解並執行特定任務,進而提升業務流程的自動化程度與運營效率,並降低人為錯誤。例如,在銷售自動化方面,一家電子商務公司可透過 Fine-tuning 優化 AI 銷售助理,使其根據顧客的購物歷史與個人偏好,自動生成量身定制的促銷訊息或產品推薦。如此一來,AI 不僅能更準確地預測顧客需求,還能主動推送適合的產品與折扣資訊,提高銷售轉化率,同時減輕銷售人員的工作負擔。

Fine-tuning 的優勢與挑戰

綜合來說,Fine-tuning 的核心價值在於 將 AI 從「一般通用」變成「企業專屬」,讓企業能更有效地利用 AI 工具滿足需求。運用微調技術,企業可以大幅減少每次與 AI 互動所需的 Token 數量,從而降低運行成本。此外,企業可在內部環境中訓練 AI,既能確保敏感資料不外流,也能強化資料安全性,而經內部數據微調後的 AI ,能更快速生成精確回應,提升互動流暢度並減少錯誤資訊的風險。

而雖然 Fine-tuning 具有諸多好處,但是也具備一定的技術難度。一般而言,Fine-tuning 需克服的挑戰如下:

  1. 選擇合適的預訓練(pre-train)模型及微調方法

    在技術層面, Fine-tuning 微調可採用多種不同的方法,如何在保留模型原有能力(capability)的同時,又獲得最好的學習效果,需仰賴有經驗的專家給予指導,並進行系統化的實驗。

  2. 準備適當的訓練資料集

    微調數據的數量、品質以及形式都將直接影響最終成果。大量但品質低劣或格式不佳的數據,未必能得到好的微調結果;而具備高品質、形式佳的數據,即便數量有限,仍可透過數據合成(data synthesis)或強化等技術的輔助,也可能有利於微調的成功。

  3. 確保適當的運算資源

    在 Fine-tuning 微調模型時,通常需要比模型推論(inference)更多的資源,如算力和記憶體等,而有時不一定一次就能微調成功,可能需要多回合地嘗試。因此,如何有效地運用算力及資源、提高微調成功率,也是必須克服的挑戰之一。

綜前所述, Fine-tuning 是企業打造專屬 AI 模型的重要技術,能協助企業更靈活應對市場變化、拓展創新應用,無論是提升客戶服務、優化內部流程,或創造新的商業價值,都將成為數位轉型與業務成長的關鍵。若企業希望充分發揮 Fine-tuning 的效益,則可選擇與具備經驗的廠商合作,以降低試錯成本與時間,提高成功率並加速導入。

AI 在金融業的價值:把資訊轉化為即時決策力

協助金控企業整合內外部數據,以權限控管提升知識管理效能

以大型金控企業為例,其組織規模龐大、檔案文件眾多且分散,故希望能將專業知識與大型語言模型整合,提供各部門自建 AI 大腦與客製化 AI 助理,實現全面的教育訓練與技術轉移計劃,並有效提升業務效率,且需根據不同部門進行權限控管設定。

而在大型金控企業的服務流程中, AI Search for KM 首先會從使用者帳號、其輸入的問題進行權限判斷,確保符合企業機敏資料的資安規範。另 AI Search for KM 不僅支持使用者上傳內部檔案作為分析標的,還能向外部網站、外部指定資料庫、現有搜尋引擎資料結果進行資料查詢請求,並優化檔案內容之解析效果,以幫助問答結果更加精準。如與《OpView 社群口碑資料庫》做串接,便能提供企業即時掌握市場輿情資料等外部動態,透過多元數據整合,打造全面的知識數據中心,讓企業能夠應對快速變動的產業環境,實現更智能化的知識搜尋與決策支持服務。

問答情境展示

搜尋內部知識 - 智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

下圖中如證券部門與期貨部門人員同樣詢問「當沖交易的限制」,系統便能自動判別其所屬部門,並提供「證券交易的限制」與「期貨當沖交易的限制」兩種版本之完整回覆:智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

串接外部資料 - 結合即時市場數據與輿情分析,提供多元化預測視角

而若是提問上市櫃企業「近期的議題重點及未來一周股價預測」,AI Search for KM 也能調用即時市場數據,並給出完整、多元的回應與預測看法,快速整理社群媒體近期的熱議焦點供使用者做參考:

 

智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

進階應用 - 檢查與生成文件

結合生成式 AI 與 NLP 技術,智慧助理系統支援法規知識檢索、跨文件整合與一致性檢查,協助承銷人員快速消化龐雜資料並生成報告,提升效率與正確性,全面優化金融作業流程。

2025意藍 AI 數據年會 熱烈報名中!

即將在9/16(二) 台大集思會議中心舉行,匯聚400+產業菁英,
帶您一次掌握企業決策、產業應用、落地案例,
歡迎前往報名!

AI Search 電子報 | vol.04 資訊零散難管理?這4步驟幫你解,知識活化立即上線

AI Search 電子報 | vol.04 資訊零散難管理?這4步驟幫你解,知識活化立即上線

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

翻轉資訊散落困境,4 步驟推動企業知識活化

隨著市場上的競爭日益激烈,如何有效推動知識管理成為了企業提升競爭力的關鍵;然而,許多企業在推動知識管理的初期,常常不知如何起步。知識管理不僅涉及知識的識別、儲存,更包括如何系統性地分享和應用這些知識,本文將介紹知識管理的基本概念,並說明可以從哪些面向著手建立和推動知識管理體系,最後深入探討生成式AI如何為知識管理領域帶來革新。

知識管理概念介紹

知識管理是什麼?

知識管理 (Knowledge Management, KM) 是指在企業或組織內部,對知識進行系統性的蒐集、保存、組織、分享和應用的過程,將分散在個人、團隊和系統中的知識轉化為整個組織可以利用的資產,進而提升組織的營運能量和整體競爭力。

知識管理如何提升企業競爭力?
知識管理可以透過以下多種面向提高企業競爭力:
  1. 改善營運效率:藉由知識管理,員工可以分享和存取企業或組織內部的資訊,在遇到問題時,也能通過知識庫或企業內部的知識分享平台迅速找到解決方案,避免重新投入時間和資源去解決過去發生過的問題,進而提升生產力與整體營運效率。
  2. 加速創新能力:企業可以透過知識管理,從現有技術和過往經驗中持續學習,並不斷進行優化,加速產品的創新及發展進程。
  3. 提高決策品質:知識管理促進了既有知識與資源的整合,使企業能夠記錄和分析過去的決策及其結果,藉此更準確地預測市場風險和潛在挑戰,加速決策過程並提升決策精準度。
  4. 經驗傳承:知識管理有助於經驗的傳承,除了避免人員重複學習和研究,也可以減少因員工離職或崗位變動造成的知識流失。

企業推動知識管理4步驟​

從零開始推動知識管理是一個需要循序漸進的系統化過程,涉及多個層面的協同與整合,而企業可以從以下四個步驟著手:

  1. 知識需求分析:分析企業內部的知識需求,確定哪些知識對企業的運營和發展至關重要,並識別現有知識資源和潛在的知識缺口;同時盤點目前的知識管理狀況,包括知識儲存方式、知識共享文化以及技術基礎設施等,找出需要改進的領域。
  2. 整合發展目標並制定策略:根據需求分析的結果,制定詳細的知識管理計劃,包括如何蒐集、存儲、分享和應用知識,並設定具體的里程碑,將知識管理融入企業發展策略中。
  3. 營造知識分享文化:持續宣導知識分享對於個人和企業長期發展的重要性,除了高層人員以身作則外,也通過培訓、激勵措施或知識管理競賽等,鼓勵員工主動分享經驗與知識,抑或讓知識物件的經營成為員工績效評估的加分專案。
  4. 導入適當技術:結合生成式AI人工智慧技術,對企業內外部知識進行系統性盤點,建構一站式資訊平台,實現 AI 輔助的知識檢索與問答,提供知識的分享、學習、再運用與創新,包括知識地圖、專家黃頁、知識社群、結構化在職訓練及問答等。
而若是原先就有既有知識庫的企業,則可以透過以下方式優化並提升知識運用效率:
  1. 評估現有知識庫:全面審視企業內部的知識庫,包括其結構、格式、內容及涵蓋範圍,識別關鍵知識,以及和潛在需要補強的地方。
  2. 導入新一代生成式AI知識管理系統:對現有知識庫與生成式AI知識管理系統進行整合,並利用AI的自然語言處理能力,提升知識檢索的準確性以及效率。
  3. 即時更新與動態適應:建立即時更新機制,確保知識庫中的內容能即時、動態調整,以快速反映業務需求和市場變化。
  4. 加強處理非結構化資料:透過語意分析技術,將非結構化資料轉換為結構化資料,並結合生成式AI技術,利用其自然語言理解和生成能力,自動化處理大量非結構化資訊,將其轉化為可檢索和使用的知識,提高知識庫的全面性和實用性。

生成式 AI 對知識管理的影響

隨著生成式 AI 技術的發展,其為知識管理領域帶來了重要的革新。在技術層面上,它讓知識的檢索變得更為彈性;在應用層面上,則讓使用者能更有效且快速地吸收相關知識。

技術面的影響:搜尋檢索更彈性,更容易學習上手

傳統的知識檢索方式主要仰賴關鍵字檢索與預設的分類樹結構,而這樣的檢索方式存在兩個痛點:

  1. 對於使用者來說,較難將問題轉換成複雜的關鍵字組合進行提問,也因此使用門檻較高。
  2. 關鍵字的檢索多是以「關鍵字組合的出現次數」作為搜尋依據,無法反映出問題與參考文本間的語意關係,造成檢索結果可能與用戶期望有所偏差。

將生成式 AI 導入知識管理領域後,應用其「自然語言對話」的特性,可以有效解決上述兩個痛點:

  1. 生成式 AI 允許使用者以自然語句直接輸入問題進行提問,用戶無須把問題轉換成複雜的關鍵字組合,降低了使用門檻。
  2. 生成式 AI 能夠更好地理解問題的語意,使搜尋結果能夠更準確地反映問題的內容,並找到與問題真正相關的參考文本。此外,生成式 AI 可以生成淺顯易懂的答案,直接解決使用者的問題。 
導入及使用上的影響:更有效的知識吸收與消化

傳統的知識管理,在導入及使用上往往停留在「檔案」層級,使用者須透過關鍵字檢索找到最可能的檔案後,自行閱讀數十甚至上百頁的內容,從中找出與問題相關的資訊,再進一步消化以解答問題;而這樣的架構將使得用戶無法「快速且有效」地吸收、消化知識。

引入生成式 AI 技術後,這一問題則能得到顯著改善。生成式 AI 將知識管理提升到「答案」層級,利用 AI 的語意理解及自然語言問答能力,讓使用者可以直接獲取系統所參考的資料庫中相關檔案的段落,並生成白話回答,協助使用者高效達成知識消化及吸收的目標。

企業導入 AI Search for KM 之優勢

意藍的 AI Search for KM 即是整合生成式 AI、高速搜尋引擎與 NLP 技術的新一代 GenAI 知識管理工作平台,其所具備的功能特色如下:

  1. 支援多種檔案格式:支援各種常見的檔案格式,包含常用的 Office、PDF、文字檔等等,滿足企業需求。
  2. 權限控管機制:確保使用者僅能查詢到自己有權限查看的檔案與文件,避免資料洩露,滿足企業管控機敏資訊、劃分部門權限等需求。
  3. 全文檢索:系統不僅能夠檢索檔案的標題和內文,也能查詢作者及其他相關資訊,提供廣泛且彈性的資料檢索範圍,提升使用者找到所需資訊的效率。
  4. 支援對話問答:支援使用者以對話問答方式與系統互動,並會根據問題和參考資料提供口語化的回答,幫助使用者輕鬆理解和應用所得知識。
  5. 支援地端或雲端服務:企業可以根據自身需求選擇最合適的部署方式,導入雲端或是地端服務,並可根據不同使用情境和文件資料需求切換不同的大型語言模型。

而對於企業而言,導入 AI Search for KM 具有以下優勢:

  1. 降低人力成本:透過自動化搜尋和回答的功能,有效減少員工手動處理知識資訊的需求,簡化知識搜尋與管理流程,節省人力成本。
  2. 提升作業效率:因支援多種格式的檔案管理,使得資訊不再分散,方便員工找到所需資料,並提供即時準確的回答,縮短員工資訊獲取時間。
  3. 增強知識內化與應用:支援自然語言互動方式,讓員工能以白話文提問,快速獲得所需知識,從而提升消化和應用知識的效率與準確度。
  4. 強化資料安全與隱私:具有權限控管機制,確保只有具備相應權限的人員才能查找和檢視資料,且系統支援地端服務,能有效防範內外資料洩露風險。
  5. 促進知識共享與協作:可整合不同來源的資料,讓各部門的員工都能輕鬆提問和搜尋知識,促進團隊合作交流。

推動知識管理對企業的長期發展至關重要,不僅是提升競爭力的核心,更是確保企業持續創新和應對市場變化的基礎。隨著生成式 AI 技術的引入,知識管理的應用層次也得到了極大提升,透過導入合適的知識管理系統,企業便能更靈活地管理和運用知識資源,從而在競爭激烈的市場中保持領先地位。

從碎片資料到即時答覆,AI 助力政府循證治理升級

隨著社會對於數據的信賴與依賴度愈發提升,近年來「循證治理」也開始備受重視,固本案旨在協助單位推廣運用資料科學於政府政策決策上,運用前瞻性的觀測分析工具,有效利用過去累積及研究團隊蒐集的大量資料,如相關座談、論壇等,進行社會趨勢的深入分析,精準辨識影響國家發展的關鍵社會課題。 而為了提升政府對公眾問題的回應能力與透明度,意藍透過生成式 AI 人工智慧與檢索增強生成技術(RAG),改善資料搜尋與處理流程,進一步建立「社會政策知識檢索問答平台」,供部會首長及政策制定者能在立法院質詢等公共場合中,即時並準確地回應各方提問,從而提供基於循證的決策支持,優化政策制定與執行過程。

社會政策知識檢索問答平台服務流程說明

  1. 資料發言者與屬性辨識

    根據過往資料,準確區分不同發言者在各議程中的發言內容,接著自動識別並標記文本中的屬性詞,如提及到的重點人物、組織名稱及地理位置資訊等,辨識出各發言者的關注焦點與觀點的異同,從而對其關注面向進行初步的探勘與分析。

  2. AI 摘要與自動分群

    藉由大型語言模型可自動解讀並提取文本的核心內容,再透過語意分群演算法,對這些經過摘要整理的文本進行分析。

  3. 檢索增強生成參數設定

    結合搜尋引擎、向量資料庫與大型語言模型,彙整並突顯資料中的重點,亦可驗證特定解釋是否正確,並提供更深入的洞察,及議題之關鍵觀點。

技術特色與優勢

在此專案中,意藍首先透過命名實體識別 (NER) 技術精準標記關鍵資訊,辨識發言者重點與關注焦點,再由大型語言模型 (LLM) 自動提取文本核心內容,並利用語意分群技術自動分類不同觀點,提升分析準確性。接著,藉由 RAG 技術結合搜尋引擎與向量資料庫,進行深入資料檢索與生成,讓 AI Search for KM 所提供的知識平台能夠整合施政計畫及歷史文本,透過即時資料處理,為部會首長在受立院質詢時提供即時且準確的回答,確保政策回應具備充分理據,支持循證治理,提升政策反應效率與決策品質。

問答情境展示

整合跨來源資料,評估公共議題與政策對社會之影響

當使用者提問「特定族群於公共議題/政策中會受到的影響」,系統便能根據相關參考資料自動彙整摘要,進行跨來源資料整合,同時確保決策者可追溯具體資料點,透過 AI 資料科學技術進行循證決策,提升公共決策者政策回應效率。

整合跨來源資料,評估公共議題與政策對社會之影響

發言者發言重點摘要,快速掌握核心論點

而 AI Search for KM 也能自動分析目標對象於各式會議或政策發言的重點,並生成總結,協助決策者快速掌握討論的核心觀點,實質提升政策討論的效率,支持政策的數據化決策過程。

發言者發言重點摘要,快速掌握核心論點

調取最新數據,分析政策實施成效

調取最新數據,分析政策實施成效

最後,我們也可以透過 AI 分析來幫助政府評估政策成效,即時分析、更新最新的政策執行情況,讓決策者能夠迅速反應並做出調整。如上圖中詢問「非營利幼兒園設立家數是否提升」,系統便能根據參考文章回覆目前累計的公共化幼兒園增設數量,亦提供如幼兒入園率、後續可如何推動,及現階段政策實施所遇到的困難等。

藉由數據化的分析結果不僅提供給決策者,也可向公眾展示政策執行進度與成效,提升政府在社會政策治理上的透明度和公信力。

2025台灣人工智慧年會 重磅登場!

即將在9/9(二)-9/10(三) 中研院舉行
匯聚1,500+產官學研菁英,邀集 Google DeepMind、華碩等頂尖講者,
共探 Agentic AI、機器人&無人機、運動科學、AI 政策與安全等前沿議題。
歡迎前往報名!

AI Search 電子報 | vol.03 掌握檢索增強生成技術

AI Search 電子報 | vol.03 掌握檢索增強生成技術

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 回答總不精準?RAG 技術正是企業關鍵解方

AI 技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG 檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討 RAG 檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰

生成式 AI 在生成內容時,可能會出現杜撰答案或是答非所問等 AI 幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:

  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但 RAG 檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應在生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。

除了具備以上優勢外,一個好的 RAG 檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:

  1. 無檢索結果時的回覆

    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。

  2. 生成回覆內容的實用性

    檢索增強生成需確保生成之內容不僅與檢索到的知識相關,且還需具備流暢性、準確性及實用性。

  3. 效率和擴展性

    隨著知識庫不斷擴大,檢索增強生成需維持檢索和生成過程的效率與精準度。

  4. 實際應用彈性

    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。

RAG 檢索增強生成的應用場景

RAG 檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:

  1. 問答系統

    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG 檢索增強生成能提供更精準及可靠的解答。

  2. 智能對話系統

    對話系統通常需結合大量知識來回答使用者的問題,RAG 檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。

  3. 知識檢索及擴充

    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG 檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。

  4. 知識管理

    RAG 檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。

RAG 檢索增強生成的應用實例

而 RAG 檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:

  1. 輿情分析

    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容作為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。

  2. 財經分析

    在金融領域,RAG 檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。

總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合 RAG 檢索增強生成的發展優勢

RAG 檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為 RAG 檢索增強生成出色與否的重要因素。

而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的 RAG 檢索增強生成服務體驗。

此外,擁有 RAG 檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了 RAG 檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。

意藍於檢索增強生成的應用

而意藍資訊在 RAG 檢索增強生成主要有以下應用:

  1. 訓練大語言模型

    意藍自行研發並訓練了大語言模型 eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強 RAG 檢索增強生成中對於參考相關資訊的摘要及回答的能力。

  2. AI Search for KM 新一代 GenAI 知識管理工作平台

    我們將 RAG 檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代 GenAI 知識管理工作平台,提供使用者更高效、智能的知識搜尋與問答服務體驗。

  3. AI 輿情應變顧問

    將 RAG 檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供 AI 應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。

意藍 AI 技術的未來展望

我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的 RAG 檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過 RAG 檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過 AI 技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

民眾聲音太多、處理繁雜?AI 助攻政府即時掌握民意脈動

地方政府經年累月從派工系統、話務系統、人民陳情與市長信箱等來源接獲的陳情資料相當龐雜,無論是市府人員後續欲整理陳情資料進行分析,或是借鑒過往陳情案件的回覆用於新案件,皆費時費力。因此,意藍運用 AI 技術,提供市府陳情儀表板與陳情問答輔助解決方案,協助地方政府得以更有效分析資料輔助陳情回覆

陳情問答知識檢索問答平台服務流程說明

政府單位肩負服務民眾和執行公共政策的重責,其運作效率將直接關係到社會的發展與民眾福祉,而知識管理可透過以下多個面向提升政府效能:

  1. 收集各來源資料並進行語意分析

    集合來自派工系統、話務系統、市長信箱等各來源之陳情資料,透過 DeepNLP 技術進行情緒分析和特徵擷取,填補陳情資料中資訊欄位的缺失值,使整體陳情資料更為完整。

  2. 跨來源資料檢索,快速產製報表

    利用強大的搜尋引擎技術,提供市府同仁簡單、快速的陳情資料全文檢索服務,並進一步建置視覺化儀表板,以利單位人員透過檢視圖表,從中挖掘出陳情資料比例、變化、趨勢等資訊。

  3. 生成式 AI 陳情問答輔助

    利用 AI 技術,將過往市民陳情類型資料、機關的答覆內容,以及常見市政問答 (FAQ) 文本等資料,進行個資去除後,再使用大語言模型預先進行訓練和學習,最後結合生成式 AI,產出最合適的陳情回覆內容。

技術特色與優勢

為了協助專案單位自動化完成陳情資料分類與視覺化,並結合生成式 AI 提供陳情回覆作為參考,意藍規劃之 AI 智能搜尋解決方案,首先收集目標單位之1999陳情資料,再將各來源數據透過 DeepNLP 技術,分析民眾陳情情緒、擷取陳情內容特徵資訊等,整理成結構化資訊。接著,採用意藍搜尋引擎技術,讓使用者可以藉由彈性的檢索條件快速查詢到想了解的特定陳情案件,再串接 Google Looker Studio 整合成儀表板,提供視覺化圖表供使用者可以快速、清晰地了解案件概況與量化數值。最後我們使用 AI 技術,對歷史陳情問答資料進行個資去除與大語言模型預先訓練,建構新型態生成式 AI 陳情問答知識平台,並以 Web Service 形式提供自動生成式陳情回覆 API 服務,以利市府同仁得以更清楚且有效率地分析資料、加速陳情資料分類,並提升回覆效率。

導入成果展示

陳情資料結構化

結構化應用:加速資料處理流程,可用於各種統計分析(地點、時間、車牌、店家等)

陳情資料結構化

陳情問答輔助解決方案可除去個資使其更安心,並協助客服人員快速回覆民眾客訴內容,以提升效率、減輕人力負擔,以下為陳情資料回覆流程:

  1. 民眾客訴內容

    對原始資料進行去除個資處理,避免留存過多不必要的個資。

  2. 查詢不同資料源

    QA 問答紀錄、FAQ 常見問答集、規格說明書及疑難雜症技術文件。

  3. 大語言模型生成回覆信

    LLM 參考各種相關內容作為回覆依據,產出適合的回覆內容。

陳情資料回覆助理

協助客服人員快速回覆民眾陳情內容,提升客服效率、減輕客服人力負擔

陳情資料自動回覆助理

陳情資料回覆特點

陳情資料自動回覆特點

AI Search 電子報 | vol.02 導入不是目的,企業該如何部署大語言模型?

AI Search 電子報 | vol.02 導入不是目的,企業該如何部署大語言模型?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

企業導入大語言模型,該從任務、流程還是模型本身開始?

大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型 eLAND GOAT 的具體應用。

認識大語言模型

什麼是大語言模型?
大語言模型(Large Language Model,LLM) 是一種基於大量資料訓練而成的深度學習模型,其特色在於模型參數量大、學習訓練資料廣泛,且在模型的訓練過程中,能夠識別及理解大量資料中每個詞句間的上下文關係,以及在語意空間中背後的意義,再根據使用者的提問或指令(Prompt),提供符合邏輯的自然語言回應。大語言模型的運作邏輯就好比文字接龍遊戲──根據使用者所輸入的詞句,模型會基於已學習、訓練過的資料與上下文,來評估哪些字詞最有可能出現在使用者的輸入之後,並生成相對應的文字回應。  
大語言模型的核心特點?

綜前所述,大型語言模型的核心特點包含以下幾點:

  1. 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
  2. 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
  3. 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。

不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI 杜撰、AI 幻覺 (Hallucination) 等現象,生成出錯誤甚至不存在的回應。

大語言模型的商業應用可能性

企業的大語言模型應用場域

而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:

  1. 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
  2. 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
  3. 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
企業如何善用大語言模型提升營運效率?
那企業究竟又該如何將大語言模型的優勢發揮出來?關鍵在於企業如何對模型下達準確的指令(Prompt)。對大語言模型提問時,語句及用詞要盡可能地具體、包含上下文訊息,才能讓大語言模型提供有效的回應,例如當想了解有關國內知名金融業者新光金控的相關資訊時,應避免簡化問句為「總資產?」,而是「請問新光金在今年第二季結束時的資產總額是多少?」,通過更精確的提問,大語言模型能提供更完整的回應。 除了應避免模糊不清的提問內容,提問的技巧也同樣重要,使用者應逐步引導模型進行推理,如欲詢問「新光金在大陸投資有賺錢嗎?」,可先調整提問為「請問新光金在大陸的投資項目為何?」,根據模型的回應,再進一步提問「投資損益為多少?」;藉由調整指令,讓模型能夠不斷學習並一次性回答多個相關問題,從而提升營運效率。  
企業導入大語言模型的關鍵要素​

隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:

  1. 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
  2. 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
  3. 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調 (fine-tune)。 

意藍於大語言模型的應用

意藍深知大語言模型對企業營運的重要性與無限可能性,然而因目前主流的大語言模型多是使用英文語料進行訓練,中文語料的佔比相對較低,大部分資料又都是以簡體中文為主,與繁體、台灣所慣用的用字遣詞有一定差距。意藍挑選出台灣常用的語料,在兼顧適法性及合理使用的條件下,整理出AI的學習材料,開發出台灣本土的大語言模型 eLAND GOAT,目標讓大語言模型可以更加在地化,並兼顧效能及成本之考量,符合企業特定目的用途。 而意藍在發展出的台灣本土在地化大語言模型 eLAND GOAT 後,也將其運用在企業知識管理領域中,推出新一代 GenAI 知識管理工作平台-AI Search for KM,不僅提供使用者可以以自然語言的形式進行問答,還結合檢索增強生成(Retrieval-Augmented Generation, RAG)技術,能夠有效地找出精準且相關的內容,藉此提高大語言模型在生成內容的準確性和可靠性,並能夠在每次回應時附上參考內容出處以供驗證,有效避免 AI 幻覺的可能性。 除此之外,AI Search for KM 還可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,並且可選擇在雲端、地端或混合部署大語言模型,免除機敏資訊外洩的疑慮的同時,也能快速的從大量的檔案文件中找出所需內容,大幅縮減企業在知識內化的時間成本與負擔,使其能夠更有效地管理和運用知識資源、提升營運效率。

政府單位想提升行政效率?AI 可以這樣發揮效用

隨著數位化時代的加速發展,政府組織與各行各業都同樣面臨著數位轉型的重要轉折點;對於公部門而言,AI 的導入與應用不僅能夠提升作業效率,更能有效加強公共服務品質、協助應對日益複雜的科技挑戰。而隨著政府內部資料量急劇增加,其對於升級知識管理應用的需求也日益增強,如何引入合適的管理工具、創造知識的最大價值,已成為提升行政效能、實現循證治理智慧化的核心課題。

知識管理對政府單位的重要性

為什麼政府單位需要知識管理?
政府單位肩負服務民眾和執行公共政策的重責,其運作效率將直接關係到社會的發展與民眾福祉,而知識管理可透過以下多個面向提升政府效能:
  1. 提升行政效率
    透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。
  2. 改善決策品質
    面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。
  3. 增強政府公信力
    透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。
政府單位的知識管理需求
相較於一般企業,政府單位在知識管理方面具備以下獨特需求──
  1. 提升資料透明度的同時,兼顧公眾隱私與敏感資料保護
    政府部門需要在推動資訊公開與透明的同時,妥善保護公民的隱私及敏感資料,防止未經授權的資料洩漏或濫用,因此用以輔助之知識管理工具不僅需能有效整合資訊,還需具備完善的存取控制機制,以確保資料安全。
  2. 長時間保存文件和數據,滿足稽核和法律合規需求
    政府部門的文件和數據保存期通常較企業更長,因涉及的資料需滿足各種法律、稽核及合規要求,如政策文件、預算報告或公共安全數據等資料,需長期保存並於必要時進行查閱、追溯。
  3. 業務範疇廣泛,資料量龐大且多樣性高
    政府內部通常由多個部門組成,且各單位的業務範疇不同,涵蓋政策規劃、業務執行、管理督導、勾稽核實等多元領域;各部門間的數據格式、常用檔案形式與管理流程可能存在差異,多樣的需求使得統一管理的難度也有所提升。

政府單位知識管理升級解方 ── 新一代 GenAI 知識管理工作平台

針對以上政府單位對於知識管理的需求,意藍的新一代 GenAI 知識管理工作平台便是理想的解方,其亮點特色如下:

  1. 支援多種常用檔案格式

    包含 Office、PDF 、CSV 等等,不需額外花費太多心力進行轉檔處理,可應對政府內部多樣化數據格式的需求,有效解決跨部門整合困難。

  2. 具備檔案權限劃分機制

    確保只有授權人員能夠存取、檢視特定檔案,降低機密資料洩露風險,滿足政府單位對敏感資料保護的嚴苛要求,並為跨部門合作提供安全的知識共享環境。

  3. 提供彈性的部署方式

    政府單位可根據自身需求,選擇雲端平台服務或導入地端服務,也可以針對不同的任務,自由切換 OpenAI GPT 系列、Meta Llama 系列、 國科會TAIDE 模型、或者意藍經由大量本地語料調校而成的 eLAND GOAT 等多種大語言模型,滿足政府對多樣化應用場景的處理需求,同時提升系統效能,符合成本效益。

  4. 支援語意全文檢索

    無需進行額外的資訊建立、分類或關鍵字標記,系統便能對檔案進行全範圍檢索,包含標題、內文、作者、建檔時間等資訊皆在搜尋範圍內,解決了龐大資料量下的搜尋困難。

  5. 支援易於使用的對話問答

    使用者可以自然語言對文件知識點提問,系統會根據問題與相關參考資料,回傳彙整後的口語化回覆,讓非技術人員與高層主管能以直覺方式獲取知識,提升整體操作便利性與工作效率。

導入生成式 AI 知識管理系統的長遠影響

生成式 AI 知識管理系統的導入,不僅能有效為政府單位解決跨部門協作與資料整合的挑戰、提升行政效率與決策品質,更能助力其持續優化知識的流通與應用模式,逐步實踐智能化治理與決策,為數位政府與智慧城市的長遠發展奠定堅實基礎。

WAVE_BN_2
亞洲指標 AI 造浪展
「WAVE 2025(World AI Vision Exhibition)」

意藍將於7/31(四)-8/2(六)參展,攤位編號 B1709
現場將分享我們在 AI 應用上的實務經驗,歡迎有興趣的你一起來交流!

Copyright eLAND Information Co., Ltd.