<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

精華文章掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

掌握檢索增強生成技術,強化企業應用AI的價值:
意藍在RAG的應用與展望

AI技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討RAG檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰

生成式AI在生成內容時,可能會出現杜撰答案或是答非所問等AI幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:

  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但RAG檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。

除了具備以上優勢外,一個好的RAG檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:

  1. 無檢索結果時的回覆

    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。

  2. 生成回覆內容的實用性

    隨著知識庫不斷擴大,RAG檢索增強生成需維持檢索和生成過程的效率與精準度,這通常需要強大的搜尋引擎技術支持才做得到。

  3. 效率和擴展性

    整合了生成式AI、搜尋引擎,和NLP (自然語言處理) 技術,讓企業員工只要上傳知識文件後,就可以輕鬆地檢索和提問,且AI Search for KM專注於企業自身所建構的知識庫,確保回答乃基於實際數據和企業內部知識,並提供地端運算方案,避免內部資料外洩風險。

  4. 實際應用彈性

    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。

RAG檢索增強生成的應用場景

RAG檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:

  1. 問答系統

    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG檢索增強生成能提供更精準及可靠的解答。

  2. 智能對話系統

    對話系統通常需結合大量知識來回答使用者的問題,RAG檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。

  3. 知識檢索及擴充

    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。

  4. 知識管理

    RAG檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。

RAG檢索增強生成的應用實例
而RAG檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:
  1. 輿情分析
    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容做為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。
  2. 財經分析
    在金融領域,RAG檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。
總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合RAG檢索增強生成的發展優勢

RAG檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為RAG檢索增強生成出色與否的重要因素。

而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的RAG檢索增強生成服務體驗。

此外,擁有RAG檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了RAG檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。

意藍於檢索增強生成的應用

而意藍資訊在RAG檢索增強生成主要有以下應用:

  1. 訓練大語言模型

    意藍自行研發並訓練了大語言模型eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強RAG檢索增強生成中對於參考相關資訊的摘要及回答的能力。

  2. AI Search for KM新一代生成式AI知識管理系統

    我們將RAG檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代生成式AI知識管理解決方案,提供使用者更高效、智能的知識搜尋與問答服務體驗。

  3. AI輿情應變顧問

    將RAG檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供AI應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。

意藍 AI 技術的未來展望
我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的RAG檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過RAG檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過AI技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

想進一步了解更多意藍AI技術嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>新一代生成式AI知識管理系統如何落地應用?四大使用與問答情境展示​

精華文章新一代生成式AI知識管理系統如何落地應用?四大使用與問答情境展示​

新一代生成式AI知識管理系統如何落地應用?四大使用與問答情境展示

生成式AI的應用是當今知識管理領域的熱門趨勢,而意藍資訊AI Search for KM作為整合生成式AI、搜尋引擎和NLP技術的新一代知識管理工具,不僅能達成自動化搜尋、智能化回答,也具備能處理非結構化資料及即時更新知識庫等優勢。本文將說明AI Search for KM在不同場景下的應用模式,帶領讀者瞭解其具體能提供之協助與達成效益。

本期 AI 知識庫亮點

AI Search for KM 四大使用情境

AI Search for KM能夠自動化彙整與使用者所提問題相關的參考文本資訊,並以此為依據、利用生成式AI來回答問題;在此過程中,企業僅需將文件或資訊上傳至知識庫中,系統便會在回覆使用者提問時,引用企業所建構的知識庫資料,在多種情境下協助用戶更輕鬆地達成知識檢索:
  1. 新人自助學習
    新進員工加入公司後,常會需要花費大量時間閱讀手冊、參加教育訓練或向身邊同事詢問問題,以瞭解公司規範或產品知識等;而透過與AI Search for KM進行問答,新人在自學過程中便能夠更快速、完整地熟悉公司相關資訊或作業程序。
  2. 員工資訊查找
    企業員工在處理日常業務時,若需搜尋特定檔案/文件抑或是查找其中的知識點,經常會需要耗費大量時間和精力,而藉由AI Search for KM的協助,便能更有效率地找到所需資訊的位置。
  3. 合作夥伴交流
    過去企業對外與合作夥伴商談合作事宜時,可能需要透過郵件、電話等方式展示公司產品資訊,因此溝通效率較低,資訊傳遞也可能有所疏漏且不夠及時。而在AI Search for KM的幫助下,雙方理解與運用合作所需資訊的效率便可大幅提升,進一步加強彼此間的交流與聯繫。
  4. 客戶智能問答
    企業也可應用AI Search for KM於產品相關的智能問答服務,即時解答客戶提出的問題,避免客戶聯繫真人客服而無法迅速得到回覆等狀況。

AI Search for KM 四大問答情境

接著進一步說明AI Search for KM可回答的問題類型──
  1. 是非題問答
    AI Search for KM可以根據參考資料,判斷使用者提出的問題內容是否正確並回覆。舉例來說,將我國《證券交易法》的檔案上傳到資料庫後,提問「上市公司要設有獨立董事嗎?」,此時系統便會會回答「是的」並列出參考資料。
  2. 名詞解釋
    當使用者對於特殊專業領域的名詞不熟悉或有疑慮時,可以使用AI Search for KM協助解析名詞,系統會根據所提供的參考資料,以簡易且白話的文字說明名詞定義。例如在科技公司內部,將研發文件上傳至資料庫後,工程師便可詢問「鐵電記憶體是什麼?」,隨後系統就會根據檢索出的相關資料,以通順白話的文字進行回答。
  3. 情境問題
    當使用者在日常業務上遇到某些情境、並且想要瞭解該情境下相關問題的答案,可以向AI Search for KM提出情境問題,例如詢問某公司「新人到職的學習資源管道有哪些?」,系統便會根據參考資料、針對情境進行理解與判斷後回覆。
  4. 知識活化
    AI Search for KM可以協助活化檔案文件中的知識,讓使用者透過提問,快速消化、理解檔案文件中知識點;例如若詢問「台積電海外設廠的考量有什麼?」,系統會根據文本回覆如當地市場需求、生產成本等,使用戶達到彷彿與大師對話的效果。
總結來說,AI Search for KM的應用範疇相當廣泛,適用於各種與知識搜尋、知識問答相關之情境需求,並有效協助企業員工克服過往需花費大量時間查找並理解繁瑣文件的痛點。
經由實際測試,AI Search for KM能在使用者提問後約10秒內,自多種格式檔案間得到解決該問題所需的知識點,可以大幅減少查找知識的時間,而且由AI代勞,可節省回覆處理問題的人力。經過大型組織的統計, 整體可提升企業作業效率達40%以上;目前AI Search for KM更已獲多個不同規模的企業、研究機構及政府部門採用,足見其在知識管理領域的重要性與價值。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>新一代生成式AI知識管理系統 AI Search for KM介紹說明(影片)

精華文章新一代生成式AI知識管理系統 AI Search for KM介紹說明(影片)

新一代生成式AI知識管理系統
AI Search for KM介紹說明(影片)

意藍新一代生成式AI知識管理系統AI Search for KM,結合了生成式AI、搜尋引擎和NLP技術,為企業組織提供了全新的知識管理解決方案,更加地容易上手使用。本次我們便以影片形式來為大家介紹,AI Search for KM如何協助各企業或機關單位快速檢索和應用組織內部的重要知識,解決傳統知識管理中的痛點,提升工作效率和資料安全性。

影片精華

企業知識管理常見痛點

知識管理對於企業來說至關重要,可以協助企業內部的專業知識得以保存、傳承、優化,維持企業競爭優勢。然而現今普遍的企業知識管理系統仍存在幾個常見的痛點:

  1. 學習企業知識庫並進一步內化所產生的人力成本過高

  2. 知識的運用不夠自動化、搜尋不夠智能化

  3. 系統不好上手

  4. 無法區分部門/層級權限

>>詳細痛點剖析,請見AI Search for KM 基本介紹0:23
AI Search for KM服務五大特色

AI Search for KM 是一款新一代的生成式AI知識管理系統,具有以下五大核心特色:

  1. 支援多種格式

    包括PDF、Microsoft Office等多種職場常見的檔案格式,滿足各組織單位需求

  2. 權限控管機制

    可針對不同部門和機敏資料進行權限管控,確保資料安全性

  3. 支援全文檢索

    支援全文檢索功能,讓使用者能夠輕鬆快速地找到所需資訊

  4. 支援口語問答

    支援口語化的對話問答功能,提升使用者操作便捷性

  5. 可選擇地端/雲端運算方案

    可根據單位需求選擇部署在地端或雲端,兼顧安全性與效能

>>詳細服務特色說明,請見AI Search for KM 基本介紹2:22
AI Search for KM應用情境

AI Search for KM 在產業中的應用情境廣泛。例如,在知識檢索方面,AI Search for KM能夠精準引用企業知識庫中的資料,提供使用者準確的答案和資料來源,從而提高搜尋效率和可信度。此外,在對話問答方面,AI Search for KM能夠以口語化的方式回答使用者提問,降低使用者的學習成本,提升使用者體驗。

>>詳細 是非問答/名詞解釋/情境問答 應用情境,請見AI Search for KM 基本介紹5:20
AI Search for KM vs 一般生成式AI

有別於一般的生成式AI,AI Search for KM有著更多的優勢。首先,在資料準確性與可信度方面,AI Search for KM能夠根據企業建構的知識庫提供準確的答案和資料來源,避免因不實際資料而產生的錯誤或幻覺。再與一般常見的生成式AI如GPT-4相比,透過提供組織專屬的資料給AI Search for KM ,系統便可以根據專業領域知識來精準回覆,不限於網路公開資料。

>>詳細說明AI Search for KM與一般生成式AI差異,請見AI Search for KM 基本介紹7:29
AI Search for KM服務導入方式

想導入AI Search for KM服務,首先需要評估並整理組織內部的資料庫與知識文件,確定哪些內容是重要且需要被整合進系統的,下一步即可根據組織的需求選擇 Web Service API,或是線上可登入的服務平台等方式來導入服務,並進行生成式 AI 等參數設定,之後使用者便可以直接開始使用 AI Search for KM 來進行知識管理!

>>詳細說明AI Search for KM 服務導入方式,請見AI Search for KM 基本介紹8:18

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>拆解生成式AI知識管理系統如何克服組織的KM痛點​

精華文章拆解生成式AI知識管理系統如何克服組織的KM痛點​

拆解生成式AI知識管理系統如何克服組織的KM痛點

生成式AI的應用是當前知識管理領域的一個重要發展方向,其應用範圍與情境更是廣泛。本文將剖析各類組織常見之知識管理痛點,並說明AI Search for KM具體提供之協助與達成效益。

本期 AI 知識庫亮點

生成式AI於知識管理應用上的發展趨勢?

生成式AI結合知識管理之重點優勢
新一代知識管理系統結合生成式AI,可以發揮的重要技術優勢便是利用AI優秀的語言理解能力,可回答問題、以及自動生成內容,讓使用者更輕鬆的找到問題相關的參考知識、吸收內容中知識點,大幅提升知識工作者的效率,進而提高知識管理的效益,方向上可歸納為以下要點:
  1. 知識重點摘要與生成
    生成式AI可以自動化彙整與問題相關的參考文本資訊,幫助使用者更有效地吸收文本知識。
  2. 24小時隨時服務
    基於生成式AI的智能知識搜尋與問答系統可以提供即時的、準確的問題回覆,有助於協助員工隨時隨地解決業務中遇到的問題。
  3. 問答體驗更人性化、高效
    生成式AI不僅能夠理解語言的語意,還可以更好地處理多樣性的自然語言表達,使知識服務更加貼近使用者的需求。
生成式AI結合知識管理可能面臨之挑戰
而關於生成式AI在知識管理應用上可能會遇到的挑戰及問題,則包含:
  1. 機密性和資安風險
    對於許多組織而言,使用生成式AI相關服務時容易有外洩機密、資安等疑慮,甚至因此頒布生成式AI工具禁令,即是為了防範此問題發生。
  2. 答非所問或錯誤解答
    生成式AI模型本身對於其未訓練過的資料,可能會出現杜撰答案或是答非所問的狀況,無法控制AI生成結果之可信度,也缺乏標示資料來源。
  3. 微調領域模型成本高
    一般的生成式AI模型可能無法回答特定領域的知識,需要透過模型微調 (fine-tune) 才能使其具備一定程度的領域知識回答能力;不過微調模型所需投入的人力、機器設備等方面成本皆較高。
  4. 系統整合不易
    要將企業內部知識管理系統內留存的知識,與生成式AI模型進行串接整合,中間牽涉到技術、成本等問題,整合過程不容易且缺乏經驗。
總體而言,生成式AI在知識管理中的應用前景廣闊,但組織應該謹慎應對機密性和資安問題,同時確保模型的合理使用,並以活化企業既有知識,最大程度地發揮其效益並降低潛在風險。

新一代生成式AI知識管理系統之情境案例

而新一代生成式AI知識管理系統,又是如何發揮上述優勢,同時克服生成式AI可能帶來的資安、杜撰答案等隱患呢?接著我們便以案例,來向大家說明新一代生成式AI知識管理系統如何成功為各類企業組織加值,透過AI智能進行知識管理。
剖析各類組織常見知識管理痛點

我們以實際使用新一代生成式AI知識管理系統 (AI Search for KM) 的客戶案例來看,當時該組織所面臨到的痛點有:

  1. 知識文件檔案量大,要找到所需的檔案文件需花大量時間,常常不知從何找起。
  2. 問題知識點散落於不同檔案文件之中,需要看過所有相關檔案才能完整的彙整、吸收其中的知識內容。
  3. 無法針對不同部門、不同層級間,所能接觸到的知識文件檔案、對檔案執行的動作(閱讀存取、編輯修改等)進行權限控管。

除此之外,過去市面上的知識管理系統多半只能透過關鍵字搜尋所有的檔案名稱是否命中關鍵字,需要使用者逐一自點開檔案、檢視其中內容,再以人工將不同檔案文件中的知識點自行消化整合,轉化爲問題的最終彙整知識內容。此外,市面上這種以搜尋為核心的知識管理系統,多半無法兼顧到組織對於檔案文件所需的權限控管機制。

AI Search for KM 具體提供之協助與效益
而新一代生成式AI知識管理系統 (AI Search for KM) 是如何解決上述企業知識管理痛點、貼近使用者需求? 透過結合搜尋引擎技術、能夠處理各種非結構的知識文件檔案,並提供整合權限控管機制的一站式平台,讓使用者可以透過單一平台找到所需檔案文件,同時滿足各類組織的機敏資料控管、部門權限劃分需求。

此外,再結合語意分析與生成式AI技術,AI Search for KM讓使用者以口語化文字提問,快速且精準的找到問題相關參考檔案,並進一步整合不同檔案中與問題相關的知識點,彙整為白話文字回覆,提升使用者體驗並加快取得知識點的效率,成功活化組織內部的知識管理生態。

最後,AI Search for KM可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,立刻就可以升級具有生成式AI的能力,並且可選擇使用雲端或地端大語言模型,可以部署在企業內部環境中,免除機敏資訊外洩的疑慮。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span> 生成式AI的商業機會與挑戰:意藍資訊在 AI 技術上的應用

精華文章 生成式AI的商業機會與挑戰:意藍資訊在 AI 技術上的應用

生成式AI的商業機會與挑戰:
意藍資訊在 AI 技術上的應用

生成式AI是一種人工智慧技術,主要特點是能夠生成新的內容,例如文字、圖像或音訊,來解決問題。而意藍資訊除了有自行研發的大語言模型eLAND GOAT外,也推出了許多的AI智能數據解決方案。

本期 AI 知識庫亮點

認識生成式AI

生成式AI的原理是什麼?
生成式AI是 基於深度學習,透過擁有大參數量的神經網絡來記憶學習大量的資料,並且在沒有明確標籤或指導之下,自行學習資料的分佈,來生成更多類似的資料。工作邏輯就好比文字接龍遊戲,使用者在輸入詞句後,生成式AI便會根據過往學習時曾看過的訓練資料,來評估該詞句接下來在高機率的情況下會產生的字詞為何,並進行相對應的文字生成。

目前的生成式AI通常會配合兩種建立模型的技術,第一個是預訓練 (pre-train),也就是先在沒有特定任務目標的情況下先進行模型的訓練,之後再將該訓練好的模型投入到實際應用中。打一個比方,就像預先訓練AI的基本語文能力,之後在克漏字測驗、改錯、造句、摘要、閱讀理解等任務上都會用到這些能力;另一個是大模型 (large model),包括不斷推升神經網路模型的參數量規模,以及給予更多的訓練資料,都是希望讓生成式AI的能力及適用狀況可以更加地擴大。

生成式AI的應用場域與未來發展

生成式AI的應用實例
生成式AI可以在文書生成、摘要、提供方法推論、回答知識題等方面提供協助,並且也能在行銷、廣告、政治社會等領域,甚至是學術研究、政府單位當中扮演探索或發想性質的角色。不過需要注意的是,若是要針對如計算題這種有標準答案的內容時,生成式AI有時可能無法完全正確的回應,這時就會需要仰賴使用者再多留意與求證。
生成式AI的挑戰與未來趨勢
2023年劍橋字典選出的年度代表字:Hallucination (幻想),其便反應了人工智慧的可信賴性會是一大挑戰,尤其生成式AI有杜撰、編造消息來源的不可控性。因為生成式AI的能力一大部分是仰賴過往曾經看過的訓練資料再經過類似機率選擇的過程來生成內容,因此存在不確定性,以及拼湊內容、無中生有的可能。另外,生成式AI還有資安風險的隱憂,例如提供的資訊被模型業者拿去做為訓練模型之用,而近來也有許多例子都能證實,即使在訓練模型時設了重重關卡,訓練出來的模型還是可能會在無意之間把公司內的機敏資料洩漏出去。

而要克服這些問題,首先我們要能讓AI產出的答案變成是載明參考資料出處且可驗證的。在未來,生成式AI模型一定會不斷推陳出新,成為繼30年前圖形化界面 (Graphical User Interface) 之後,最大的一個人機界面革命,可以理解使用者的口語表達並完成各項任務的自然介面 (Natural User Interface)。目前已有利用生成式AI的自動化框架,能夠將一個任務的所有工作流程進行拆解的案例,使得生成式AI可以去完成每一個環節相應的步驟,成為生成式AI發展的趨勢方向。

意藍資訊的AI服務應用

意藍大語言模型eLAND GOAT 與 OpenAI的差異
而為了解決生成式AI在應用上的幻想杜撰、資安等問題,以及台灣本土大語言模型缺乏繁體 (正體) 中文語料等情況,意藍資訊也在AI領域持續追求成長與卓越。相較於OpenAI的GPT模型,由意藍所自行研發出的大語言模型eLAND GOAT,即是以大量台灣社群網站、網路媒體的繁體中文語料進行訓練,具備了更好的繁體中文理解、生成能力,在使用上能夠提供更為在地化的體驗。此外,相較於OpenAI僅提供放在公有雲上的模型,eLAND GOAT能夠提供企業小型化、特式化 (specialized) 的地端模型,可以運行在企業內部環境中,依循企業組織的權限設定,滿足企業對於資安上的需求。
意藍AI智能數據解決方案

除了大語言模型eLAND GOAT,意藍資訊也致力於發展各式AI智能數據解決方案,來滿足客戶在不同場域的各種需求,如:

  1. 輿情GPT

    結合全台最大的社群口碑資料庫OpView,讓使用者能夠在輸入簡單的關鍵詞後,快速找出最相關的資料,並藉由生成式AI來生成口語化、條列重點的輿情精華摘要,解決過去在解讀社群輿情時,需要人工對話題逐篇檢視、理解的時間。

  2. AI Search for EC 新一代智能貼標與搜尋推薦系統

    以AI語意分析技術,自動解析商品中所帶有的各式資訊文本,生成能代表商品的重點標籤,再綜合評估聲量、搜量、銷量等多元指標,能有效解決電商品牌在商品曝光、推薦、搜尋引擎優化上的各項痛點,讓消費者可以更精準的找所需的商品。

  3. AI Search for KM 新一代生成式AI知識管理系統

    整合了生成式AI、搜尋引擎,和NLP(自然語言處理)技術,讓企業員工只要上傳知識文件後,就可以輕鬆地檢索和提問,且AI Search for KM專注於企業自身所建構的知識庫,確保回答乃基於實際數據和企業內部知識,並提供地端運算方案,避免內部資料外洩風險。

想進一步了解更多意藍AI技術嗎?
<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>知識管理結合生成式AI?新一代知識管理系統的5大優勢

精華文章知識管理結合生成式AI?新一代知識管理系統的5大優勢

知識管理結合生成式AI?新一代知識管理系統的5大優勢

知識管理對企業長期發展至關重要,而乘著AI趨勢,知識管理系統又可以怎麼與生成式AI結合,發揮加乘效果?本文旨在介紹新一代生成式AI知識管理系統的五大優勢,並說明意藍資訊AI Search for KM如何應對企業知識管理中的挑戰,翻轉企業知識生態。

新一代生成式AI知識管理系統有何優勢?

傳統的知識管理系統 (Knowledge Management System) 依照知名管理學大師Thomas H. Davenport教授之研究成果,強調累積留存大量的工作知識 (Working Knowledge) ,再經由建立知識社群 (Knowledge Community) 做活化應用。然而許多年過去了,很多企業花費大量的人力、時間,在於將知識留存於系統中,這樣的做法並沒有不對,但是過度強調在「知識入庫」的時候,要填寫非常詳細的知識索引卡 (metadata),例如所屬知識分類、與其他知識的相對關係、關鍵字詞等,這會讓員工同仁對於上傳知識感到麻煩而卻步;另一方面在使用知識的時候,需要透過關鍵字詞、知識分類等來找尋知識,有時候員工同仁就是不知道怎麼找尋知識,遑論下出正確的關鍵字詞,這將使得傳統知識管理系統的使用率日漸下滑,最終成為企業內部的封存檔案館、知識「蚊子館」,沒有充分發揮出潛在的效益。
究其原因,就在於傳統的知識管理系統的技術不夠聰明,需要經過繁瑣的系統教學和使用步驟,沒辦法讓系統代勞大部分的事情,例如只要將知識文件上傳,系統就會聰明地自動進行拆解、分析,下次有需要的時候直接用口語查詢,系統就會在理解問題、遍覽知識庫之後,用口語整理出所需要的答案 – 這才是理想的企業知識管理系統。
新一代生成式AI知識管理系統5大優勢
運用了生成式AI (Generative Artificial Intelligence,GenAI) 的新一代知識管理系統AI Search for KM,就是企業內簡單易上手、聰明的知識管理系統。其內部整合了生成式AI、搜尋引擎,和NLP技術(自然語言處理,Natural Language Processing),讓企業員工只要上傳載入知識文件後,就可以輕鬆地檢索和提問知識,進一步解決企業知識的運用流程不夠自動化、搜尋不夠智能化等問題,以及員工學習與內化之人力成本過高等問題。相較於一般知識管理系統,新一代知識管理系統AI Search for KM之具體優勢更包含以下:
  1. 自動化搜尋和回答
    新一代生成式AI知識管理系統具備先進的搜尋引擎和生成式AI技術,如同企業的專屬智能助理一般,能夠自動化搜尋知識庫中的資訊並提供即時、準確的回答。
  2. 個性化和智能化回答
    採用生成式AI技術,能夠理解和處理自然語言,讓使用者能夠以更直觀、自然的方式與系統進行互動,並根據使用者的偏好和上下文提供個性化的回答,且支援口語問答,使知識服務更加貼近使用者的需求。
  3. 處理非結構化資料的能力
    相較於傳統知識管理系統,新一代生成式AI知識管理系統更擅長處理非結構化的資料,例如營運報告、研發紀錄、技術文件、客戶問答等,即便是大量文字、沒有特別填寫知識分類或是關鍵字詞,都可以直接透過AI來自動拆解分析,進一步做到內容理解。這將可以放大企業知識價值,讓企業資源均可以被有效利用。
  4. 即時更新和動態適應
    透過即時更新知識庫,不需要重複大量的人工來整理知識並上傳入庫,這對於動態變化的環境,讓系統能夠應對新興的知識和快速變化的業務需求,自動分析整理,相較於傳統系統更加靈活。
  5. 使用者友善
    新一代生成式AI知識管理系統設計為使用者友善,提供直觀的介面和易於操作的功能,只要會口語詢問就能活用企業知識,可減少使用者的培訓成本,讓企業員工均能夠輕鬆使用。
總結來說,新一代生成式AI知識管理系統在搜尋、理解、回答和適應等方面具有更顯著的優勢,使得企業能夠更有效地管理和運用知識資源。

生成式AI知識管理系統如何應對企業知識管理中的挑戰?

知識管理與AI的結合雖勢不可擋,然隨著生成式AI的蓬勃發展,大眾對於資安、資料保密等議題也愈發重視,除此之外,該如何避免知識管理系統結合生成式AI後產生杜撰回覆,也是一重要課題,故意藍資訊的新一代知識管理系統AI Search for KM不僅讓AI解決方案實際落地,更能化解以生成式AI進行知識管理時,企業所會面對到的挑戰:
  1. 提供可信的回覆
    AI Search for KM專注於企業自身所建構的知識庫,包括精準引用企業知識庫裡的資料,能夠讓生成式AI「言之有本」,回答有具體根據,能夠列出知識文件的出處及參考段落,進行確認和覆核,將可以大大地提高可信度。也可以整合企業部署在內部資訊環境中、既有的知識管理系統,讓系統回覆能基於實際數據和企業內部知識,再加上先進的搜尋引擎技術,避免生成式AI因不實際資料而產生的錯誤或幻覺 (Hallucination)。
  2. 數據安全與隱私強化
    透過「權限控管機制」可以結合到企業內部的部門組織權限,限制每位員工所能夠存取問答的知識範圍,符合企業資訊安全的規範。另一方面,可以「建立企業地端專屬模型」,可選擇性地將整套系統部署在企業內部環境中,如此AI Search for KM可以協助企業設定使用者訪問權限、提高安全性、降低資料外洩風險。 企業可以自行根據職位、部門、專業領域來限制或開放不同層級的訪問權限,以確保機敏資訊僅供具備權限的相關人員查閱,從而有效避免內外部知識外洩的安全疑慮。
  3. 適合不同產業和不同規模之企業
    新一代生成式AI知識管理系統 (AI Search for KM) 適用於各式產業、規模之企業,從少數員工的工作室或是事務所,到大型集團企業,甚至是政府與公家機關單位,其應用優勢主要體現在保密性和可靠性方面。 首先AI Search for KM,提供地端運算方案,透過將生成式AI模型運行在本地環境,系統可以極大程度的降低外部入侵風險,從而確保企業和機構的機敏資料得到有效保護,減少資訊洩露風險;另一方面,其所生成之回覆均是基於企業內部所建立之知識庫,避免出現生成式AI杜撰、虛構答案的AI幻覺問題,進而減少錯誤資訊被提供的風險、提高使用者知識內化的效率與精確度。
  4. 自動學習與持續優化
    將知識管理系統結合生成式AI後,再透過語意分析、知識庫動態更新等方式,讓新一代生成式AI知識管理系統具備自動學習和不斷優化回答準確性的能力。 透過語意分析技術,實現對語境和上下文的理解與感知,讓系統可以更好地理解使用者提問,並準確回答涉及特定上下文的問題;而知識庫的動態更新,則可自動將新的檔案文件知識整合至知識庫中,確保回答時參考知識點的即時性與時效性。
此外,新一代生成式AI知識管理系統亦可透過使用者反饋機制,利用使用者的回饋來調整回覆相關參數,從而改進後續回答內容,提升回覆準確性。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>為什麼企業需要導入以AI智能問答為基礎的知識管理?

精華文章為什麼企業需要導入以AI智能問答為基礎的知識管理?

為什麼企業需要導入以AI智能問答為基礎的知識管理?

知識是企業最寶貴的資源之一,它包括內部專業知識、流程和經驗,故建置完善的知識管理系統對於企業的長期發展相當重要。而意藍資訊AI Search for KM便提供了更先進、自動化程度更高,且使用者友好的知識管理系統,以AI賦能企業合作夥伴。

本期 AI 知識庫亮點

知識管理對企業的必要性是什麼?
新一代生成式AI知識管理系統(AISKM)是什麼?
企業如何有效整合現有資源到新一代知識管理系統?

知識管理對企業的必要性是什麼?

企業於知識管理上的常見痛點
2000年時期由Thomas H. Davenport教授發表關於知識工作者 (knowledge worker) 及知識社群 (knowledge community) 的一系列研究,加上Ikujiro Nonaka教授等人發表的顯性知識 (explicit knowledge) 及隱性知識 (tacit knowledge) 的轉換模型,帶動了企業對於知識管理的重視,進而投入知識管理系統,將企業知識留存累積起來,成為良好的基礎。然而二十多年過去了,在企業知識管理中,常見的痛點包括學習與內化企業知識的人力成本過高,以及知識庫的運作不夠自動化或不夠智能化、系統難以上手。
首先,學習企業知識庫並進一步內化所產生的人力成本過高,是許多企業在知識管理中所面臨的挑戰之一。傳統的知識管理可能會有資訊分散、版本過多的問題,需要員工自己進行彙整與吸收,因此對於需要調用企業知識庫來解決工作問題的員工而言,常會花很多時間搜尋、學習與內化,最後才能應用於工作上,導致企業相關人力成本偏高的痛點。
其次,知識的運用不夠自動化、搜尋不夠智能化也是另一個常見的問題。隨著企業資料量不斷增加,手動處理大量的知識資訊變得愈來愈困難,使用者可能在大量的文件中難以找到需要的資訊,或搜尋功能不夠智慧、精準,進而導致效率低下,無法即時應對快速變化的商業環境。 最後,系統不好上手也是一個普遍的問題。傳統知識管理系統通常缺乏互動性,且系統複雜難懂,需要員工接受長時間的培訓才能夠熟練使用。
導入新一代生成式AI知識管理系統的優勢
而要想解決上述企業知識管理上的問題,關鍵便在於找到可以有效降低人力成本、提高操作效率,同時確保員工能夠輕鬆上手,從而打破企業內的資訊孤島。故引入生成式AI知識管理系統,對於企業的優勢便在於提升知識管理的效率和效益,讓企業先前對於大量投入所累積的知識,能夠充分地活化運用。
新一代生成式AI知識管理系統,可以快速查找到與問題相關的檔案文件,並以簡單易懂的語句進行提問及回覆,協助使用者彙整、內化其中知識點,從而節省人力資源、加速知識內化過程。再加上生成式AI在自然語言處理能力上的強項,支援使用者口語化問答,讓使用者體驗 (User Experience) 更加自然與直觀,不僅易上手、減輕員工學習負擔,促進了更廣泛的系統應用。

新一代生成式AI知識管理系統(AI Search for KM)是什麼?

AI Search for KM 基本介紹
意藍資訊「新一代生成式AI知識管理(AI Search for KM)」不同於傳統知識管理系統,整合了生成式AI、搜尋引擎,和NLP技術(自然語言處理),讓使用者可以更輕鬆地檢索和應用企業有價值的知識。 就像在跟真人聊天一樣,只要企業把文件或資訊存入AI Search for KM 的資料庫中,當有問題或需要特定的知識時,只需要透過簡單易懂的白話文進行提問,使用者便可快速獲得所需的知識,避免繁瑣的搜尋或閱讀大量文件。此外AI Search for KM可專注於企業自身所建構的知識庫,並在提回覆使用者時顯示所引用的知識庫資料,確保回答能基於實際數據和企業內部知識,避免生成式AI因不實際資料而產生的錯誤或幻覺。
AI Search for KM 五大核心特點

意藍資訊所推出的「新一代生成式AI知識管理(AI Search for KM)」有五大核心特點:支援多種格式、權限控管機制、支援全文檢索、支援對話問答、支援地端/雲端。

  1. 支援多種格式

    支援企業常用的各種檔案格式,包含docx、PDF、xlsx、csv、OpenOffice 3.x 等格式,滿足企業檔案格式需求。

  2. 權限控管機制

    讓使用者僅能查詢到具有檢視權限的檔案文件資料,避免資料洩露,以滿足企業管控機敏資訊、劃分部門權限等需求。

  3. 支援全文檢索

    提供廣泛且彈性的資料檢索範圍,除了檔案文件的標題與內文之外,作者等資訊也在資料檢索範圍內,使用者可自行選擇欲檢索的範圍。

  4. 支援對話問答

    支援使用者以對話式問答,對文件知識點提問,系統會根據使用者提出的問題與相關參考資料,回傳彙整後的口語化回覆,讓使用者可以輕鬆上手。

  5. 支援地端/雲端

    可配合單位需求選擇地端或雲端服務。支援多種生成式AI的大語言模型 (Large Language Model,LLM),從先進的OpenAI GPT、到開源的Meta Llama 2,或是意藍經由大量本地語料調校而成的地端模型,可以選擇性地部署在企業內部環境中,避免了知識外洩的安全疑慮,同時又能兼顧高效能及準確性。

企業如何有效整合現有資源到新一代知識管理系統?

2步驟輕鬆完成評估與整合設定

最後,企業又可以如何有效整合現有的知識庫到新一代生成式AI知識管理系統中呢?我們可以先採取以下步驟:

  1. 評估現有知識庫

    了解企業內部現有的知識庫,包括其結構、格式、內容和涵蓋範圍,以確定哪些部分的企業知識是重要,且應該被整合的。

  2. 導入新一代知識管理系統

    將企業現有知識庫與新一代生成式AI知識管理系統整合,並根據企業的要求和知識庫的內容,進行生成式AI模型的相關參數設定,確保使用者可以迅速且精確地檢索到相關知識,取得簡單易懂的正確內容,提升系統的實用性與使用者體驗。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

Copyright eLAND Information Co., Ltd.