<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>從RAG到eLAND Active RAGᵀᴹ: 開創知識管理新篇章

精華文章從RAG到eLAND Active RAGᵀᴹ: 開創知識管理新篇章

從RAG到eLAND Active RAGᵀᴹ:開創知識管理新篇章

在數位化時代,資訊量爆炸式增長,如何有效地蒐集、整理、儲存並運用知識,無疑是各企業組織提升競爭力的關鍵之一,良好的知識管理不僅能縮短決策時間,還能提高員工效率、促進創新,以在快速變化的環境中保持彈性與活力。檢索增強生成技術(Retrieval-Augmented Generation, RAG)的出現,為知識管理帶來了全新突破,而透過引入多輪次資料整合與更高效的檢索能力,意藍進而將RAG 技術發展為獨家專門的eLAND Active RAGTM(主動式檢索增強生成技術),大幅提高知識管理的效率與精準度,使各部門單位能更靈活應對多變的市場需求。

本期 AI 知識庫亮點

主動式檢索增強生成技術如何重塑知識管理
  1. 認識eLAND Active RAGᵀᴹ ── 主動式檢索增強生成技術
  2. 導入主動式檢索增強生成技術對知識管理的影響
eLAND Active RAGᵀᴹ 在知識管理中的應用實例

主動式檢索增強生成技術如何重塑知識管理

知識不僅是企業組織日常運營的基礎,更是其持續發展和創造價值的核心驅動力,透過有效的知識管理,能夠累積並共享內部專業知識,進而減少重複性工作,促進跨部門合作、優化決策過程並提高運營效率。然而,傳統的知識管理方法往往面臨資訊分散、無法即時更新及搜尋效率低下等挑戰,使得企業在應對快速變化的業務需求時,可能需投入較多時間和資源以達成目標。

而檢索增強技術的出現,逐步突破了這些障礙,它結合了搜尋引擎快速檢索的優勢與大語言模型的生成能力,在生成答案前先檢索最新的相關資訊,以確保結果更可靠精準。特別是意藍所獨家發展之進階版本——主動式檢索增強生成技術(eLAND Active RAGᵀᴹ),更是在此基礎上實現突破,能針對複雜的問題進行多回合查詢,逐步完善答案,大幅提升知識檢索效率,為知識管理帶來嶄新的轉機。

認識eLAND Active RAGᵀᴹ ── 主動式檢索增強生成技術
eLAND Active RAGᵀᴹ(主動式檢索增強生成)是在RAG(檢索增強生成)的基礎上進一步升級的技術,具備以下核心功能特性,使其在知識管理中更具優勢:
  1. 內外部數據動態整合:
    eLAND Active RAGᵀᴹ 能根據問題性質,自動判斷最佳數據來源,從內部系統、資料庫以及外部網站等多元數據庫中進行查詢,並進行綜合分析,使生成之回覆不再僅依賴過時數據,而是根據最新資料產出精確、全面的結果。
  2. 語義理解與推理:
    與傳統基於靜態關鍵詞的檢索方式不同,eLAND Active RAGᵀᴹ 能夠理解語句的語義,並依據問題的背景進行推理和回應,使結果更相關且精準。例如,對於問題「如何優化員工的工作流程?」,系統會理解問題的核心是提升工作效率,並基於此提供具體的建議,如檢視現有工具的使用情況、引入自動化流程或改善跨部門協作等。
  3. 多回合查詢與自主優化
    eLAND Active RAGᵀᴹ 能根據已獲得之初步資訊動態調整查詢策略,多回合查詢以逐步完善答案,從而實現更深入的問題解決和分析。例如,對於「如何提升某產品市場佔有率?」的提問,在第一輪查詢時先自內部資料中提取產品的銷售數據,提供概括性分析;接著,再根據已取得的結果,進一步從外部資料庫提取相關細節,如競品的市場策略、消費者對產品的反饋等,於後續查詢中補充數據背景或上下文資訊。
導入主動式檢索增強生成技術對知識管理的影響
綜上所述,導入主動式檢索增強生成技術將對知識管理帶來深遠影響,主要體現在以下幾個方面:
  1. 提升數據整合能力,突破資訊孤島
    支援內外部數據的動態整合,能夠從企業內部資料庫、檔案系統到外部網站、公開數據源中提取所需資訊,並進行綜合分析,有效解決了傳統知識管理中數據分散、無法即時更新的難題。
  2. 增強問題理解與回應的精準性
    理解使用者提問的核心意圖,並結合問題背景進行智能推理,提供更精準且相關的答案,大幅提升知識檢索的有效性,避免使用者因模糊或不相關的資訊浪費時間。
  3. 提升知識應用價值
    透過 eLAND Active RAGᵀᴹ,能將分散的資訊轉化為結構化且易於應用的知識,例如生成與決策相關的報告或建議方案,協助企業組織快速識別業務機會或解決問題,抑或縮短內部問題回應時間、提升市場預測準確度,進而實現更高效的資源配置。

eLAND Active RAGᵀᴹ 在知識管理中的應用實例

意藍的新一代生成式AI知識管理系統 AI Search for KM 便結合了 eLAND Active RAGᵀᴹ 以及搜尋引擎、NLP與大語言模型等技術,提供使用者更高效、智能的知識搜尋與問答服務體驗,其應用情境相當多元,對複合型知識任務具備強大處理能力,能夠主動拆解複雜問題並完成知識任務,以下將舉例說明。
當對系統提問「少子女化對社會產生什麼樣的衝擊?」,在 eLAND Active RAGᵀᴹ 的輔助下,系統將依循以下步驟進行運作,確保提供精準且有所依據的回答:

  1. 拆解任務及選用工具

    系統首先分析問題,識別核心關鍵字(如「少子女化」、「社會衝擊」),並將問題拆解為可操作的子任務。接著,系統檢視可用的資料來源,如政策資料庫、最新的媒體報導、少子女化相關的學術研究與報告等,並選定最符合此問題的資料來源作為後續查詢的基礎。

  2. 生成輸入參數

    根據問題內容與選定資料庫,系統會再進一步生成適配的查詢參數,即設定一組適合用來搜尋資料的條件,並以設定之參數為基礎,啟動後續資料檢索過程。例如:

    – 關鍵字:少子女化、社會影響、政策、新聞、研究計畫。
    – 時間範圍:過去1年的相關資料。
    – 查詢格式:結構化的API請求或自然語言查詢。

  3. 解析輸出結果

    接著,系統會對檢索到的資料進行整理與分析,例如自少子女化相關的新聞報導中,統計出過去一年該議題的討論成長率,或是從研究資料中,彙整人口統計變化以及對社會經濟的具體影響點。

  4. 進行判斷及回覆

    最後,系統將檢視目前取得的資訊是否足以回答問題。若資訊足夠,則系統便會根據統計之結果與分析,生成針對使用者提問的回答,如「少子女化對社會的衝擊包括勞動力減少、教育資源分配過剩及老齡化社會負擔增加等。」
    而若判斷資訊仍不足,系統則會重新進行檢索、調整參數(如擴大時間範圍或查詢更多資料庫),最多重複三次,以確保回答的完整性與準確性。

無論是企業組織或公部門單位,在 AI Search for KM 及 eLAND Active RAGᵀᴹ 的助力下,將能夠實現更高效、更精準的資訊處理與應用,發揮知識管理的最大價值。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>生成式 AI 產業趨勢報告

下載報告生成式 AI 產業趨勢報告

生成式AI產業趨勢報告

從整體生成式AI產業應用趨勢,了解AI智能搜尋解決方案如何落地應用。

報告亮點

Part 1. 生成式 AI 話題趨勢探索
  • 1-1 生成式 AI 話題趨勢
  • 1-2 生成式 AI 的商業機會與挑戰
Part 2. 生成式 AI 的機會與應用場域
  • 2-1 生成式 AI 的應用趨勢
  • 2-2 核心技術—AI大語言模型
  • 2-3 關鍵應用—檢索增強生成(RAG)
Part 3. 以 AI Search 技術打造 AI 知識代理人
  • 3-1 本土生成式 AI 大語言模型—eLAND GOAT
  • 3-2 AI Search for KM 新一代生成式 AI 知識管理
  • 3-3 AI 驅動的多元未來:案例展示

生成式 AI 是基於深度學習,透過擁有大參數量的神經網絡來記憶學習大量的資料,並且在沒有明確標籤或指導之下,自行學習資料的分佈,來生成更多類似的資料。
而隨著近年來 AI 技術的持續創新與突破,百工百業都迎來了前所未有的數位變革。在這個數位轉型的關鍵時刻,AI 的導入與應用已成為各行各業提升競爭力和效率的重要策略。企業在應對市場挑戰與客戶需求時,數位化的布局顯得尤為重要。AI 技術不僅有助於提升運營效率,還能加強決策的準確性與靈活性,為企業的未來發展提供強大支撐。

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>AI 智能搜尋解決方案:智慧政府應用趨勢報告

下載報告AI 智能搜尋解決方案:智慧政府應用趨勢報告

AI 智能搜尋解決方案:智慧政府應用趨勢報告

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點,而本報告將為各位說明生成式 AI 於智慧政府之應用趨勢,並以實際公部門單位導入案例展示智慧治理的落地應用。

報告亮點

Part 1. 生成式 AI 於智慧政府之應用趨勢
Part 2. 意藍 AI Search for KM 服務優勢
Part 3. 政府單位導入應用展示
  • 3-1 智慧城市災防應變數據分析
  • 3-2 智慧循證治理與質詢擬答
  • 3-3 智慧政府民意及民眾陳情資訊分析
Part 4. 意藍 AI Search for KM 服務導入方式
Part 5. 如何申請 AI Search for KM 服務體驗

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點。AI 的導入與應用已勢無法擋,公部門在應對科技挑戰與回應民眾需求時,數位化佈局顯得尤為重要。 而智慧政府的核心目標,就是利用先進科技來提升公共服務的效率與品質,並使行政作業更具透明度與精準度

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>大語言模型的企業應用策略: 營運效率提升的最佳助手

精華文章大語言模型的企業應用策略: 營運效率提升的最佳助手

大語言模型的企業應用策略:
營運效率提升的最佳助手

大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型eLAND GOAT的具體應用。

認識大語言模型

什麼是大語言模型?
大語言模型(Large Language Model,LLM) 是一種基於大量資料訓練而成的深度學習模型,其特色在於模型參數量大、學習訓練資料廣泛,且在模型的訓練過程中,能夠識別及理解大量資料中每個詞句間的上下文關係,以及在語意空間中背後的意義,再根據使用者的提問或指令(Prompt),提供符合邏輯的自然語言回應。大語言模型的運作邏輯就好比文字接龍遊戲──根據使用者所輸入的詞句,模型會基於已學習、訓練過的資料與上下文,來評估哪些字詞最有可能出現在使用者的輸入之後,並生成相對應的文字回應。

 

大語言模型的核心特點?
綜前所述,大型語言模型的核心特點包含以下幾點:
  1. 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
  2. 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
  3. 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。
不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI杜撰、AI幻覺 (Hallucination)等現象,生成出錯誤甚至不存在的回應。

大語言模型的商業應用可能性

企業的大語言模型應用場域
而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:
  1. 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
  2. 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
  3. 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
 
企業如何善用大語言模型提升營運效率?
那企業究竟又該如何將大語言模型的優勢發揮出來?關鍵在於企業如何對模型下達準確的指令(Prompt)。對大語言模型提問時,語句及用詞要盡可能地具體、包含上下文訊息,才能讓大語言模型提供有效的回應,例如當想了解有關國內知名金融業者新光金控的相關資訊時,應避免簡化問句為「總資產?」,而是「請問新光金在今年第二季結束時的資產總額是多少?」,通過更精確的提問,大語言模型能提供更完整的回應。 除了應避免模糊不清的提問內容,提問的技巧也同樣重要,使用者應逐步引導模型進行推理,如欲詢問「新光金在大陸投資有賺錢嗎?」,可先調整提問為「請問新光金在大陸的投資項目為何?」,根據模型的回應,再進一步提問「投資損益為多少?」;藉由調整指令,讓模型能夠不斷學習並一次性回答多個相關問題,從而提升營運效率。

 

企業導入大語言模型的關鍵要素​
隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:
  1. 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
  2. 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
  3. 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調(fine-tune)。

意藍於大語言模型的應用

意藍深知大語言模型對企業營運的重要性與無限可能性,然而因目前主流的大語言模型多是使用英文語料進行訓練,中文語料的佔比相對較低,大部分資料又都是以簡體中文為主,與繁體、台灣所慣用的用字遣詞有一定差距。意藍挑選出台灣常用的語料,在兼顧適法性及合理使用的條件下,整理出AI的學習材料,開發出台灣本土的大語言模型eLAND GOAT,目標讓大語言模型可以更加在地化,並兼顧效能及成本之考量,符合企業特定目的用途。

而意藍在發展出的台灣本土在地化大語言模型eLAND GOAT後,也將其運用在企業知識管理領域中,推出新一代生成式AI知識管理系統-AI Search for KM,不僅提供使用者可以以自然語言的形式進行問答,還結合檢索增強生成(Retrieval-Augmented Generation, RAG)技術,能夠有效地找出精準且相關的內容,藉此提高大語言模型在生成內容的準確性和可靠性,並能夠在每次回應時附上參考內容出處以供驗證,有效避免AI幻覺的可能性。

除此之外,AI Search for KM還可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,並且可選擇在雲端、地端或混合部署大語言模型,免除機敏資訊外洩的疑慮的同時,也能快速的從大量的檔案文件中找出所需內容,大幅縮減企業在知識內化的時間成本與負擔,使其能夠更有效地管理和運用知識資源、提升營運效率。

想進一步了解更多意藍AI技術嗎?
<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

精華文章掌握檢索增強生成技術,強化企業應用AI的價值:意藍在RAG的應用與展望

掌握檢索增強生成技術,強化企業應用AI的價值:
意藍在RAG的應用與展望

AI技術發展飛速,而檢索增強生成技術 (Retrieval-Augmented Generation, RAG) 則成了讓大型語言模型 (LLM) 更加高效、智能的關鍵技術。RAG檢索增強生成結合了搜尋引擎與大語言模型,也就是檢索與生成的特點,能有效地先找出精準且相關的內容後,再讓大語言模型依據相關的內容做參考,理解後再生成回答,可以有效解決大語言模型幻想 (hallucination) 的問題,並且能夠提供相關內容的參考出處,增加了可解釋性 (Explainability) 和可驗證性 (Verifiability),並且能夠透過搜尋引擎來快速變換參考的相關資料,不需要對大語言模型進行再訓練,具備了速度和成本效益優勢,其企業應用範圍與情境更是廣泛。本文將深入探討RAG檢索增強生成的原理、優勢與應用場景,並說明意藍在此技術下的應用實踐。

認識檢索增強生成 (RAG)

什麼是檢索增強生成?

檢索增強生成 (Retrieval-Augmented Generation, RAG) 是一種結合了檢索 (Retrieval) 和生成 (Generation) 兩種方法的人工智慧技術,從大量的文本資料中搜尋相關的資訊,並基於檢索到的資訊生成更具體、更可信的答案。

檢索增強生成的優勢與挑戰

生成式AI在生成內容時,可能會出現杜撰答案或是答非所問等AI幻覺 (hallucination) 之情況。而檢索增強生成能解決此問題,增加其可解釋性和可信度,整體而言可歸納為以下優勢:

  1. 依照相關的參考資訊來生成內容,可以提高生成內容的準確性和品質,避免生成虛假、不切實際的誤導性資訊
  2. 增加可信度與可驗證性,確保生成的內容具有可靠的參考依據,而非僅根據過去的學習經驗推測,且生成的內容可被檢查驗證。
  3. 節省訓練成本,更快速地更新知識。由於訓練 (或微調再訓練) 語言模型新知識都需要大量的時間和金錢成本,但RAG檢索增強生成能利用現有模型,只要透過搜尋引擎快速更新相關的參考資料,就可以反應生成結果上,不必進行新一輪的訓練,更新速度快、成本也低。

除了具備以上優勢外,一個好的RAG檢索增強生成技術需在實際應用中克服以下挑戰,以發揮其潛力並有效提升效能:

  1. 無檢索結果時的回覆

    當檢索增強生成沒有檢索到得以回答使用者問題的知識時,需判斷並回覆無相關參考資料,不要硬答,避免大語言模型杜撰答案,才不會出現AI幻覺問題。

  2. 生成回覆內容的實用性

    檢索增強生成需確保生成之內容不僅與檢索到的知識相關,且還需具備流暢性、準確性及實用性。

  3. 效率和擴展性

    隨著知識庫不斷擴大,檢索增強生成需維持檢索和生成過程的效率與精準度。

  4. 實際應用彈性

    應用檢索增強生成時須考慮到不同領域的需求,有些領域的知識點敘述較長、有些領域知識較分散,需能彈性調整段落長短、段落數多寡等,真正能夠完整地找出相關的內容,以符合不同的應用場景,這將是關鍵重點。

RAG檢索增強生成的應用場景

RAG檢索增強生成適用於需要透過相關的參考資料來輔助回答的問答系統、智能對話系統以及其他自然語言處理應用,來滿足客戶在不同場域的各種需求,如:

  1. 問答系統

    用於需要透過相關的參考資料來輔助回答的問答系統,例如客服人員使用的常見問答集 (Frequently-Asked Questions, FAQ) 或標準作業程序 (Standard Operation Procedures, SOP),特別是在回答專業知識問題時,RAG檢索增強生成能提供更精準及可靠的解答。

  2. 智能對話系統

    對話系統通常需結合大量知識來回答使用者的問題,RAG檢索增強生成可協助系統更好地理解用戶的問題並提供具有明確出處和連貫性的回應。

  3. 知識檢索及擴充

    企業或組織通常擁有大量的內部知識資源,包括文件、報告、手冊等。RAG檢索增強生成可協助使用者快速檢索到所需的知識資訊,同時也可不斷擴充相關知識,提供更全面、深入的內容。

  4. 知識管理

    RAG檢索增強生成可協助組織更有效地管理和利用大量的知識資源,以提高知識的可用性及共享性,促進團隊合作和創新。

RAG檢索增強生成的應用實例
而RAG檢索增強生成又能應用在哪些場域呢?接著我們進一步說明應用實例如下:
  1. 輿情分析
    針對特定事件、議題,蒐集並觀測社會大眾的意見進行輿情分析,檢索增強生成可透過檢索大量相關的社群網站貼文、討論區評論、新聞文章等資料,找出特定內容做為參考,讓與搜尋引擎高度整合的大語言模型來生成對應的摘要或分析結果。此方式能從大量的資料源找出可用資訊,對輿情進行全面準確的分析,同時也保持生成內容的靈活性和即時性。
  2. 財經分析
    在金融領域,RAG檢索增強生成可透過檢索過去至今完整相關的重大訊息、公開說明書、市場數據、公司報告、專家評論等資料,生成對於當前市場概況的歸納或未來趨勢的預測推論。此方式可充分利用豐富的歷史資料,同時了解即時的市場資訊,有助於提高分析預測的準確性和可信度。
總結而言,因大語言模型進行預先訓練或微調需要耗費大量時間和資源,無法即時應對快速變動的環境,而 RAG檢索增強生成能藉由結合檢索 (搜尋引擎) 和生成 (大語言模型) 的方法,即時地分析大量的資訊,有效協助使用者更佳理解及應對快速變動的情況。

意藍資訊於檢索增強生成的應用

意藍結合RAG檢索增強生成的發展優勢

RAG檢索增強生成的概念是高度整合搜尋引擎與大語言模型,先透過檢索功能找出完整相關的參考資料,再基於大語言模型的理解和生成能力,讓該模型進行摘要,進而生成即時、精確的答案,因此搜尋引擎的好壞便成為RAG檢索增強生成出色與否的重要因素。

而意藍資訊在數據處理及分析領域深耕多年,也 將搜尋技術 (Search) 與自然語言 (NLP) 經驗結合,不僅能兼顧傳統關鍵字檢索的精準快速搜尋,以及向量搜尋可支援自然語言提問的特點,提供使用者更佳的檢索功能與卓越的RAG檢索增強生成服務體驗。

此外,擁有RAG檢索增強生成的系統就有如口袋中放了百科全書,使得在生成內容時不再受限於過往訓練的資料,而能即時瀏覽大量的專業知識文件,以解決特定領域的複雜問題,進一步提升問題解決的效率。且面對資訊爆炸的今日,新資料推陳出新,有了RAG檢索增強生成技術,可讓我們的產品與技術持續從新數據學習及擴展知識庫,使產品在任何情境下都能保持訊息的即時性。

意藍於檢索增強生成的應用

而意藍資訊在RAG檢索增強生成主要有以下應用:

  1. 訓練大語言模型

    意藍自行研發並訓練了大語言模型eLAND GOAT,能夠與搜尋引擎高度整合並進行優化,用以加強RAG檢索增強生成中對於參考相關資訊的摘要及回答的能力。

  2. AI Search for KM新一代生成式AI知識管理系統

    我們將RAG檢索增強生成應用在知識管理領域,透過結合搜尋、NLP與大語言模型打造出新一代生成式AI知識管理解決方案,提供使用者更高效、智能的知識搜尋與問答服務體驗。

  3. AI輿情應變顧問

    將RAG檢索增強生成結合最完整、最即時的網路聲量資料,提供以自然語言口語文字查詢,就可以彙整、生成輿情重點,依照真實內容來提供AI應變建議,可以應用在市場研究、行銷趨勢、公關應變,任何需要快速掌握輿情重點的企業場景中。

意藍 AI 技術的未來展望
我們相信, 整合了搜尋引擎與大型語言模型 (LLM) 的RAG檢索增強生成技術,能夠轉化為企業的知識和營運數據中心。這意味著企業中的多個重要系統,如知識管理 (KM)、企業資源規劃 (ERP)、客戶關係管理 (CRM) 以及人力資源 (HR) 等,都可透過RAG檢索增強生成技術進行整合,不僅能提高數據的利用效率,也能加強企業的資料治理能力,讓企業更加依循正確的資料做出有效決策。展望未來,我們會持續致力於透過AI技術讓數據增值,並進一步賦能合作夥伴,協助提升企業營運效能。

想進一步了解更多意藍AI技術嗎?

Copyright eLAND Information Co., Ltd.