<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>AI 如何輔助審理公務人員申訴案件?從卷宗彙整到自動生成決定書草稿

精華文章AI 如何輔助審理公務人員申訴案件?從卷宗彙整到自動生成決定書草稿

AI 如何輔助審理公務人員申訴案件?從卷宗彙整到自動生成決定書草稿

在公務體系中,當公務人員對服務機關所作之違法或不當處分(如考績、懲處等)有異議時,可依法循復審或再申訴等程序,向主管的公家機關提出申請,並提交「保障事件說明書」,詳述事件事實、主張理由與相關建議。相對應地,受理該類案件的主管機關,須於完成審理後出具正式裁決文件,即「保障事件決定書」,明確載明案件審理結果,例如撤銷、變更、駁回原處分,或作出不受理的決定,作為公務人員保障案件的重要處理依據。多年來,在案件持續累積的情況下,如何兼顧審理效率與裁決品質,成為行政體系需面對的重要課題,也促使相關單位在既有數位、資訊系統基礎上,進一步評估導入 AI 技術,以輔助既有審理流程的可行性。

為何生成保障事件決定書需導入 AI 技術?

保障事件決定書在公務人員權利救濟制度中,扮演關鍵的裁決與說理角色。但在傳統的卷宗整理、申訴內容判讀到參照相關法條的工作流程中,卻始終面臨多項挑戰:
  1. 卷宗資料與類型龐雜:各類案件往往包含大量書面資料與附件,且內容格式經常不一,人工需投入大量時間進行判讀。
  2. 案例檢索時間長:歷年累積的決定書數量龐雜,缺乏有效檢索機制,承辦人員難以快速找到可參考的相似案例。
  3. 人工比對作業繁重:承辦人員需反覆比對申訴理由、卷宗事實與相關法規條文,並將結果轉化為具備完整論理結構的裁決文字,導致整理與撰寫決定書的流程冗長。

AI 輔助生成保障事件決定書稿之成效

為回應上述挑戰,意藍資訊與相關公務單位合作,執行保障事件決定書之 AI  輔助生成專案。此系統以意藍「新一代GenAI知識管理工作平台 AI Search for KM」為基礎,整合法規資料、歷年保障事件決定書與各類案件卷宗,建置為可被 AI 理解與檢索的知識資料庫,並透過全文檢索與向量檢索的混合式搜尋機制,協助承辦人員快速搜尋所需文件與資訊。

系統運用語意分析技術解析上傳的內容卷宗,整理主要爭點,並在檢索增強生成(RAG)架構下,比對相關法規條文與歷史相似案例,提供具參考價值的適法性與申訴合理性之判斷脈絡。​在此基礎上,AI 進一步協助彙整過往案件內容,生成意見書的結構草稿,並於明確的參考脈絡下產出決定書段落的建議,作為決策輔助工具,供承辦人員審閱、調整與定稿使用。

此計畫執行主要分為四大層面,效益如下:

  1. 卷宗彙整與爭點判斷:透過 AI 自動化分析卷宗內容,快速萃取案件核心爭點,可在數分鐘內完成原先需數日的人工作業,讓承辦人員快速掌握案件重點。
  2. 相似決定書查詢:使承辦人員在數秒內取得最具參考價值的過往類似案例,確保決定書論理的一致性與前後案判決尺度相符,並大幅減少人工翻閱與搜尋所耗費的時間。
  3. 決定書段落生成:自動產出邏輯嚴謹、法規最新且來源完整的決定書草稿,大幅縮短撰寫與審閱時間。
  4. 決定書草稿完整生成:將「決定書段落生成」階段所產出的多版本段落(例如不同裁量結果)進行取捨、整併與格式統一,最終輸出風格一致、結構完整的決定書草稿,讓承辦人員在兼顧專業品質的前提下,更有效率地完成定稿作業。

綜上所述,透過導入 AI 至保障事件決定書的生成流程,不僅能縮短案件處理時間,減輕承辦人員負擔,也能同步提升裁決論理的一致性與文件品質,展現 AI  在智慧治理上的實務價值。

常見問題 FAQ

Q1:什麼是「保障事件決定書」?為什麼撰寫過程會耗時?

A:「保障事件決定書」是公務人員保障案件(如考績、懲處申訴)審理後的正式裁決文件。 

撰寫過程耗時的主要原因在於:承辦人員需處理龐雜的卷宗資料,並在眾多歷年決定書中檢索相似案例。此外,還需精確比對現行法條與申訴理由,確保論理邏輯嚴謹且判決尺度一致,傳統的人工查閱與撰寫模式往往需耗費大量工作時間。

Q2:AI 如何輔助生成保障事件決定書?會取代人工判斷嗎?

A:AI 定位為「決策輔助工具」,而非取代人工判斷。

透過 AI 輔助系統,AI 能快速完成卷宗摘要、爭點提取及相似案例檢索。AI 會根據檢索到的法規與前案,生成「決定書草稿」供承辦人員參考。最終的裁決結果、適法性審查與定稿,仍由承辦人員依專業經驗進行最後把關,確保審理的公正性與權威性。

Q3:導入 AI 輔助審理公務案件,如何確保引用法規的正確性?

A:關鍵在於採用 RAG(檢索增強生成)技術,讓 AI 「有所本」地回答。

與一般 AI 可能產生「幻覺」不同,意藍的解決方案將 AI 限制在特定的法規資料庫與機關知識庫內進行檢索,確保產出的決定書內容完全符合現行法律規範。

Q4:AI 輔助審理系統能提升多少行政效率?

A:效率提升主要體現在「資訊檢索與整理」的層面。

整理作業縮短至數分鐘內,大幅減少重複性的文書整理工作,讓承辦人員將精力集中在複雜案件的適法性研析上。

Q5:公務機關對個資與機敏資料有嚴格保密要求,AI 輔助審理系統如何確保資訊安全?

A:關鍵在於提供「地端部署」與「權限控管機制」的技術方案。

公務機關對個資與機敏資料有嚴格保密要求,AI 輔助審理系統如何確保資訊安全?

意藍資訊的 AI 輔助審理系統可支持將生成式 AI 模型運行在機關內部環境中,讓資料不需傳輸至外部公有雲端,從根本上杜絕資安外洩風險。此外,系統能進行部門權限控管,確保承辦人員僅能檢索其職權範圍內的卷宗與檔案,符合政府對機敏資訊與個資保護的高規範。

Q6:為什麼選擇意藍資訊作為 AI 智慧治理的合作對象?

A:意藍資訊具備「語意分析技術」與「豐富的政府 AI 應用落地經驗」雙重優勢。 

公務文件語言嚴謹且結構複雜,意藍結合深耕多年的 NLP(自然語言處理) 與搜尋技術,能精準判讀繁體中文的法律語境。此外,意藍的「新一代GenAI知識管理工作平台 AI Search for KM」是能快速整合機關既有的卷宗,提供高安全性、高精準度的 AI 輔助環境,為推動數位轉型與智慧治理的最佳夥伴。

Q7:AI 輔助審理系統如何確保引用的法規條文與案例資料為最新版本?

A:透過「自動化更新機制」與「動態資料管理」,確保系統資料具備即時性與精確性。

意藍資訊的 AI 輔助審理系統可以進行定期 AI Ready 資料管理與動態更新,從三個方面確保引用內容的時效性與精確度。首先,系統透過自動化同步更新機制,利用 ETL 技術定期自資料源提取最新法規與函釋,確保使用的資料始終保持即時性與精確性。其次,系統具備完善的版本控制與異動追蹤功能,能詳實記錄每次資料更新的時間與來源,除提升問答品質外,更確保引用的法規皆具備高度可追溯性。最後,結合定期盤點與優化功能,系統能根據 AI 實際應用的回饋,定期對資料範疇進行盤點與精進,補強潛在的資訊缺口,確保 AI 在輔助撰寫決定書時,其參考脈絡能持續優化並精準反映現行法律環境。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

AI Search 電子報 | vol.12 懂語意、懂脈絡,AI 如何強化風險研判與情緒洞察

AI Search 電子報 | vol.12 懂語意、懂脈絡,AI 如何強化風險研判與情緒洞察

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

從資料碎片到案件全貌:AI 如何加速電信詐欺偵查研析

近年電信詐欺逐漸走向組織化與科技化,詐騙集團除利用社群平台、假投資網站進行詐騙,也可能透過 AI 技術製作換臉、變聲等內容,使身分辨識與情資研判難度大幅提升。面對愈來愈複雜的犯罪模式,相關偵查單位接收到的資料量也隨之倍增,包含金融交易紀錄、通訊內容等分散於多個資料庫和不同格式文件中的資訊,調查人員往往要投入大量時間比對和整理,才能逐步釐清人物、帳戶、電話與金流的關聯脈絡。

偵查單位現行作業流程面臨的挑戰

在科技化浪潮下,犯罪手法不斷演變,偵查實務中所需處理的資料量與複雜度亦隨之增加。偵查單位的日常研析工作不僅仰賴多來源資訊,更必須在有限時間內整合破碎線索、重建金流與人物關聯脈絡。以下是偵查單位在作業中面臨的挑戰:
    1. 資料量龐大且複雜性高:
      偵查單位每天要處理的資料來源多元,包括民眾舉報、金融交易資料、新聞報導、社群訊息等。由於資料的格式各不相同,內容範疇又橫跨廣泛領域,使得前期研判工作負擔大幅增加。
    2. 案件脈絡難以快速掌握:
      當詐騙集團以組織化方式運作,各成員僅負責詐騙流程中的其中一個環節,這類分工模式便會導致案件線索散落於不同文件中。因此,調查人員在偵查辦案時,需花費大量時間比對、整理與交叉驗證,才能看出人物間的關聯、資金流向或上下游共犯結構,並進一步拼湊出案件全貌。

導入生成式 AI 解決方案為偵查單位帶來哪些效益

為解決上述痛點,意藍資訊協助偵查單位建置並導入「電信詐欺防制 AI 分析平臺」。本系統以檢索增強生成(RAG)架構為核心,整合生成式 AI、自然語言處理(NLP)、大型語言模型(LLM)及關聯分析等技術,並具備 Agent 多步驟執行任務的能力,在接受到指令後能自動跨來源檢索、比對並統整資料,重塑從資料彙整到案件研析的流程。

整體系統可分為三大核心模組:自動摘要、關聯分析以及圖表生成,協助調查人員更快掌握案件全貌。

AI 自動彙整與摘要可信結果

在偵辦電信詐欺案件時,調查人員常需要在短時間內了解人物、帳戶、交易紀錄與通訊內容等核心資訊。在檢索增強生成(RAG)架構與跨來源檢索能力的基礎下,調查人員提供人物姓名、公司或行號等與案件相關的線索資訊後,系統便會自動整合多來源資料與文件內容,進行語意分析與重點萃取,進而生成包含商工登記資料、戶籍資料、裁判書等資訊的摘要結果,並於回覆中提供資料的參考來源,有效縮短跨單位比對與人工查核所需時間。

關聯分析模組

利用 NLP(自然語言處理)和 LLM(大型語言模型)在多筆資料中找出人物、公司、地點、電話、帳戶等資料之間的關聯性,分析案件的交易關係或資金流向,並於生成的關聯結果中標示對應的文件與段落。如此一來,調查人員不僅能清楚掌握案件全貌與發展脈絡,也能夠依案件需求回溯原始內容,有助於未來查證、複審與移送書撰寫等作業流程。

圖表生成模組

藉由前兩個模組找出核心資訊與關聯性後,系統會將人物關係、資金流向等分析結果轉成視覺化圖表,讓案件脈絡一目了然。透過導入此模組,當調查人員面對人物關係與金流複雜的案件時,不僅能避免人工判讀造成的錯誤,若案件規模擴大,也能以現有架構研判新增之資料,節省時間成本。

透過導入「電信詐欺防制 AI 分析平臺」,偵查單位得以用更系統化的方式整合多來源資料,快速掌握關鍵線索與案件脈絡,使原先需大量依賴人工比對的研析工作,能在更短時間內完成,進而提升研析效率與判斷精準度。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

專家觀點:台灣網路情緒的負能量關鍵期約14天!


重大事件爆發後,前7天大家情緒爆棚、瘋狂留言、瘋狂轉傳;
過了7天,熱度開始降溫,而到第14天,多數人已轉移焦點。

「重點是別失控,讓情緒自然冷卻,14天後聲量通常就會回穩。」

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/12</span>意藍資訊獲邀參與2025「觀光產業數位博覽會」,以 AI 智能數據賦能觀光產業

2025/12意藍資訊獲邀參與2025「觀光產業數位博覽會」,以 AI 智能數據賦能觀光產業

意藍資訊(股票代號:6925)受邀參與2025《觀光產業數位博覽會》,展示全台最大社群聲量與口碑資料庫 OpView 在觀光領域的多元應用。活動於 12 月 2 日至 3 日在松山文創園區圓滿落幕,創辦人暨總經理楊立偉亦於論壇發表「2025台灣觀光產業消費輿情大數據」主題演講,以實證數據揭示年度觀光社群趨勢,吸引眾多產官界人士熱烈交流。

OpView 數據 × AI 技術:協助業者掌握旅客脈動 推動數位轉型

觀光署長陳玉秀於觀光產業數位博覽會開幕致詞中指出,科技與 AI 是解決觀光業缺工與提升營運效率的重要工具,能協助業者將繁瑣的作業自動化,專注於更具人際互動價值的服務場景。在觀光產業數位轉型的浪潮下,意藍資訊以大數據與 AI 技術所提供的解決方案,即能回應業者對「即時掌握旅客聲音與市場變化」的核心需求。

OpView 長期作為企業、公部門與品牌行銷團隊的重要決策工具,憑藉全台最完整的資料庫與 NLP 語意分析等專利技術,協助使用者即時掌握輿情動態與市場情報。本次於觀光產業數位博覽會中,意藍以實際案例示範 OpView 在品牌分析、競品比較、旅客需求洞察與旅遊趨勢探索等情境中的應用,展現數據對行銷策略與服務優化的價值。同時意藍亦展出 AI Agent 及 AI 自動化報表兩大全新功能,AI Agent為「懂資料、會查找、能回應」的智慧助理,能依任務需求自動檢索多來源數據,並生成摘要與洞察,大幅縮短業者在行銷及輿情管理上的分析時間,並提升判斷精準度。AI 自動化報表則可快速產出涵蓋趨勢、熱議話題與聲量來源等多項指標的數據分析報表,協助業者掌握品牌社群概況並追蹤輿情變化。

而在觀光產業數位博覽會「觀光產業數位轉型的實踐與挑戰」主題論壇中,楊總經理以觀光產業整體社群趨勢拉開演講序幕,藉由深入剖析觀光話題的熱議事件與網友關注話題,揭露遊客於觀光旅遊體驗上的常見問題,提供業者品牌行銷與活動策畫等方面的策略建議,實際展現如何利用輿情數據直接聆聽消費者聲音,以掌握產業趨勢,提升品牌價值。在綜合座談中,楊總經理及與談者共同探討 AI 在觀光產業的實際落地方式,並分享企業導入 AI 的成功關鍵,透過跨界交流為在場業者帶來更多實務啟發。

IMG_7715-1

(圖1:意藍資訊楊立偉總經理於觀光產業數位博覽會分享「2025台灣觀光產業消費輿情大數據」,吸引產官界高度關注。)

IMG_7525

(圖2:意藍資訊於觀光產業數位博覽會現場開放 AI 顧問諮詢,吸引與會者了解 OpView 與深入交流。)

在活動現場,意藍資訊同步提供 AI 顧問諮詢與 OpView 操作展示,吸引眾多與會者駐足交流。除展攤體驗外,意藍亦受邀參與產品媒合沙龍,由意藍市場分析師以飯店業的實際應用情境為例,分享如何透過 OpView 掌握品牌聲量變化、社群關鍵字趨勢與評論觀測,並介紹業者如何利用 AI Agent 快速掌握產業動向,並進行行銷靈感蒐集、KOL 分析與口碑追蹤等工作,以提升整體營運效率。

IMG_7805

(圖3:市場分析師於觀光產業數位博覽會分享 OpView 於飯店業的實際運用。)

OpView 以最完整的社群口碑資料庫與 AI 驅動的分析能力,向觀光產業展示數據在決策中的真實效益,協助業者掌握旅客回饋、洞察旅遊趨勢並預警潛在風險,強化行銷策略與服務品質。未來,意藍資訊將持續以大數據與 AI 賦能各產業,協助業者以更智能、更有效率的方式制定決策,協助台灣觀光走向智慧化、專業化與永續發展。

為掌握 2025 年觀光產業的市場脈動與旅客行為趨勢,本報告使用《OpView 社群口碑資料庫》觀測近一年觀光相關的社群討論,從旅遊地點、旅遊型態到飯店旅宿等面向進行分析,協助旅遊業者與公部門快速掌握觀光產業消費輿情,作為行銷規劃與決策制定的重要參考依據。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

精華文章AI重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

AI 重塑調查流程:串連電信詐欺線索,全面掌握案件脈絡

近年電信詐欺逐漸走向組織化與科技化,詐騙集團除利用社群平台、假投資網站進行詐騙,也可能透過 AI 技術製作換臉、變聲等內容,使身分辨識與情資研判難度大幅提升。面對愈來愈複雜的犯罪模式,相關偵查單位接收到的資料量也隨之倍增,包含金融交易紀錄、通訊內容等分散於多個資料庫和不同格式文件中的資訊,調查人員往往要投入大量時間比對和整理,才能逐步釐清人物、帳戶、電話與金流的關聯脈絡。

偵查單位現行作業流程面臨的挑戰

在科技化浪潮下,犯罪手法不斷演變,偵查實務中所需處理的資料量與複雜度亦隨之增加。偵查單位的日常研析工作不僅仰賴多來源資訊,更必須在有限時間內整合破碎線索、重建金流與人物關聯脈絡。以下是偵查單位在作業中面臨的挑戰:
  1. 資料量龐大且複雜性高:偵查單位每天要處理的資料來源多元,包括民眾舉報、金融交易資料、新聞報導、社群訊息等。由於資料的格式各不相同,內容範疇又橫跨廣泛領域,使得前期研判工作負擔大幅增加。
  2. 案件脈絡難以快速掌握:當詐騙集團以組織化方式運作,各成員僅負責詐騙流程中的其中一個環節,這類分工模式便會導致案件線索散落於不同文件中。因此,調查人員在偵查辦案時,需花費大量時間比對、整理與交叉驗證,才能看出人物間的關聯、資金流向或上下游共犯結構,並進一步拼湊出案件全貌。

導入生成式 AI 解決方案為偵查單位帶來哪些效益

為解決上述痛點,意藍資訊協助偵查單位建置並導入「電信詐欺防制 AI 分析平臺」。本系統以檢索增強生成(RAG)架構為核心,整合生成式 AI、自然語言處理(NLP)、大型語言模型(LLM)及關聯分析等技術,並具備 Agent 多步驟執行任務的能力,在接受到指令後能自動跨來源檢索、比對並統整資料,重塑從資料彙整到案件研析的流程。整體系統可分為三大核心模組:自動摘要、關聯分析以及圖表生成,協助調查人員更快掌握案件全貌。

  1. AI自動彙整與摘要可信結果:在偵辦電信詐欺案件時,調查人員常需要在短時間內了解人物、帳戶、交易紀錄與通訊內容等核心資訊。在檢索增強生成(RAG)架構與跨來源檢索能力的基礎下,調查人員提供人物姓名、公司或行號等與案件相關的線索資訊後,系統便會自動整合多來源資料與文件內容,進行語意分析與重點萃取,進而生成包含商工登記資料、戶籍資料、裁判書等資訊的摘要結果,並於回覆中提供資料的參考來源,有效縮短跨單位比對與人工查核所需時間。
  2. 關聯分析模組:利用 NLP(自然語言處理)和 LLM(大型語言模型)在多筆資料中找出人物、公司、地點、電話、帳戶等資料之間的關聯性,分析案件的交易關係或資金流向,並於生成的關聯結果中標示對應的文件與段落。如此一來,調查人員不僅能清楚掌握案件全貌與發展脈絡,也能夠依案件需求回溯原始內容,有助於未來查證、複審與移送書撰寫等作業流程。
  3. 圖表生成模組:藉由前兩個模組找出核心資訊與關聯性後,系統會將人物關係、資金流向等分析結果轉成視覺化圖表,讓案件脈絡一目了然。透過導入此模組,當調查人員面對人物關係與金流複雜的案件時,不僅能避免人工判讀造成的錯誤,若案件規模擴大,也能以現有架構研判新增之資料,節省時間成本。

透過導入「電信詐欺防制 AI 分析平臺」,偵查單位得以用更系統化的方式整合多來源資料,快速掌握關鍵線索與案件脈絡,使原先需大量依賴人工比對的研析工作,能在更短時間內完成,進而提升研析效率與判斷精準度。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報 | vol.11 AI 實務應用案例:KOL 評估 × 金融情報自動化

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

用 AI Agent 整合數據,快速選出最佳影響力合作對象

在行銷策略中,挑選合適的 KOL 已成為重要且關鍵的決策,因為合作對象不僅影響品牌曝光,也牽動後續成效。然而若缺乏 AI 協助,行銷團隊往往需要自行到 IG、YouTube、Dcard、PTT 等多個平台搜尋資料,且不同團隊或成員之間的判斷標準(如按讚數、留言數、內容調性、受眾輪廓等)也可能不一致,使得挑選 KOL 成為耗時且主觀性高的作業。

OpView AI Agent 的價值不僅是「能回答問題」,而是能替使用者跑流程、整合資料並生成比較報告,讓行銷人員能用一致、可量化的方式進行決策,有效降低人工比對的時間。

▲ OpView AI Agent 應用服務

使用者可透過圖示化問答介面,自行輸入問題,或選擇系統提供的情境按鈕,如「KOL 分析」、「主題趨勢」、「廣告投放」等。AI Agent 會根據不同情境調用最合適的分析模組,串接站台資料生成重點摘要與建議,幫助使用者快速掌握資訊核心、輿情變化與行銷機會。

AI Agent 在醫美產業的應用:以數據輔助 KOL 決策

以醫美產業為例,品牌方在挑選 KOL 時,通常需要同時檢視多項指標,例如過去在相關主題上的發文內容、平均互動表現、受眾輪廓,以及是否曾出現負面回饋或爭議紀錄。過往這些資訊往往需要行銷人員分別在不同平台上手動搜尋與比對,耗時又不易掌握全貌。

但使用 AI Agent 時,行銷人員只需輸入關鍵條件(主題、平台、期間),系統便會:

  • 抓取跨平台資料(Dcard、IG、PTT 等)
  • 計算聲量與互動指標(平均按讚、留言、Keyword 呈現等)
  • 建立候選清單
  • 產出推薦理由與比較依據

這讓行銷團隊可以一次看到「多位 KOL 的比較表格」,快速理解誰最適合合作。

此外,AI Agent 會同時提供推薦依據,例如:相關主題之平均貼文互動、討論熱點與常見問題,以及內容調性是否與品牌相符,讓使用者能以「資料為基礎」做判斷,而非僅依賴過往經驗。

▲ OpView AI Agent 問答示意圖

操作時,使用者可以選擇自行發問或透過系統預設按鈕進行問答。上圖是以自行發問的方式,請 AI Agent 分別提供不同社群網站各3位 KOL 作為參考清單,並根據判斷標準各推薦最合適的合作人選。透過此種方式,品牌便可以一次綜覽不同人選的合作效益分析,加速行銷決策效率。

金融情資零散難掌握?帶你了解金融機構如何用 AI 整合情報

金融機構在投資研究與風險控管中,最常遇到的挑戰是「資料分散、資訊量大、判讀時間長」。在市場變動加快的情況下,決策速度往往受到資訊處理效率限制。
對此,意藍資訊推出以 AI Search 為核心的三大解決方案,包含「情報分析」、「智慧客服」與「輔助作業」,透過完整的 AI 落地應用架構,協助金融機構提升作業順暢度與決策品質。
在本期電子報中,我們將聚焦於「情報分析服務」的應用,藉由案例說明 AI Search 解決方案在投資與風控作業流程中扮演的角色及其價值。

在金融機構內部,投資情報研究與風控單位的第一線人員於日常作業中,經常面臨以下四大難題:

  1. 資料來源分散,變動頻率不一
  2. 資訊龐雜,人工統整效率低
  3. 文件內容複雜,人工判讀耗時
  4. 難依個人業務需求,進行客製化彙整與應用

意藍整合 AI Search、語意分析模型與多來源資料庫,協助逐一解決上述難題,打造可同時支援投資研究與風控作業的智慧情報平台。平台系統整合公司資本結構、財務報表、即時公告、新聞、法規等關鍵資訊,單位人員僅需於單一平台內操作,即可進行跨來源資料的檢索與分析,獲取一致且即時的資訊。

首先,在投資情報服務應用中,平台內彙整企業基本資訊、財務報表與社群輿情等多來源資料,自動生成視覺化圖表,協助投資人與分析師快速掌握企業經營狀況與市場波動,進一步判斷新聞對公司股價的正負面影響與幅度。

▲智慧情報平台系統「投資情報」應用示意圖

而在風險控管方面,平台則會在多來源資料中自動偵測可能影響企業的異常訊號,並透過語意模型比對關鍵變化,生成分析與預警訊息,讓風險管控由過往的「被動查詢」轉為「主動偵測」,提供單位更即時、更精準的分析結果,提升面對事件的預警速度與應對效率。

▲智慧情報平台系統「風控情報」應用示意圖

透過整合多來源資料並以語意模型協助解讀,AI Search 讓金融作業流程更接近「即時決策」。資料取得與分析速度的改變,也逐漸重塑金融單位的工作方式。

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/11</span>感謝Yahoo《財經大人物》系列報導 楊立偉總經理深度解析網路輿情、Z 世代洞察與上櫃歷程

2025/11感謝Yahoo《財經大人物》系列報導 楊立偉總經理深度解析網路輿情、Z 世代洞察與上櫃歷程

Yahoo《財經大人物》近日以三篇深度專訪,聚焦於楊立偉總經理對台灣網路輿情的洞察、針對 Z 世代族群的解讀,以及帶領意藍從創業走向成功上櫃的關鍵歷程,完整呈現意藍的核心實力與發展視野。 以下分別節錄報導內容:

 

台灣人最愛罵第一名「大罷免」意藍總座楊立偉曝「14天就健忘」

2025.11.11 Yahoo 財經大人物 湯暖萱

台灣輿情分析第一把手、意藍資訊(6925)總經理楊立偉接受《Yahoo財經大人物》專訪表示,「台灣網路情緒的負能量關鍵期約14天。」

重大事件爆發後,前七天大家情緒爆棚、瘋狂留言、瘋狂轉傳;過了七天,熱度開始降溫,到第14天,多數人已轉移焦點。「重點是別失控,讓情緒自然冷卻,14天後聲量通常就會回穩。」。

有人說,意藍比ChatGPT更懂台灣人。據了解,不只執政黨、在野黨,連央行、國發會等公部門都會請他們幫忙看輿論走向。

那麼,意藍到底怎麼做到的呢?楊立偉笑說,「讀懂」上億筆社群資料。他們會用系統語意辨識、分類議題,再結合關鍵字熱度與網友情緒曲線,三個階段去統整出一條「發酵、爆發、冷卻」的輿論生命線。但楊立偉也強調,收集到的輿論資料不是照單全收。在龐大的留言海裡,AI還得先幫忙「篩選」確保留下的是真正反映民意的聲音。

愛醫美不追名牌!意藍總座曝Z世代最想變成GD、BABYMONSTER

2025.11.11 Yahoo 財經大人物 湯暖萱

年輕世代是網路聲量的主力,被問到現在「Z世代買單什麼?」國內輿情分析一把手、意藍資訊總經理楊立偉說,從社群討論數據可以明顯看到,Z世代(約20~30歲)最大的焦慮已經不再是買房或收入,而是「長相」。

意藍數據顯示,近年「醫美」、「皮膚管理」、「牙齒美白」等關鍵字討論熱度幾乎翻倍成長。楊立偉指出,Z世代「為自己花錢」的新價值觀,也帶動「健康與外貌並重」的生活態度,除了醫美,他們也重視飲食、運動與身心平衡。

楊立偉進一步分享,Z世代在社群上的情緒表現也與過去截然不同。他們更習慣在Threads、限時動態等短期內容平台上發聲,「說完就刪、抒發完就走」,使得輿情監測變得更即時、更碎片化。

意藍會以AI演算法偵測異常頻率與語意重複度,過濾假訊息與人為灌水行為,「我們要先讓AI判斷出哪裡是人講的、哪裡是機器講的,這樣分析出來的趨勢才準確。」搞對趨勢決定行銷的成效!

他說,意藍成功的關鍵,正是十多年累積的社群語料、情緒詞庫與關鍵字分類經驗,意藍走過二十年,從最早做網路口碑分析,到如今用AI預測市場情緒,變化雖快,但核心沒變就是幫助客戶理解人-「AI再聰明,也要懂人性。」

聯考落點預測他發明!楊立偉創上櫃AI股 意藍年營收2億元

2025.11.11 Yahoo 財經大人物 湯暖萱

意藍資訊是一家專注於AI數據分析與輿情監測的科技公司,今年5月下旬順利上櫃後,股價一度大漲逾61.2%,最高價來到193元,被市場譽為「台股最純AI股」。創辦人暨總經理楊立偉接受專訪時笑說,他與AI的緣分,其實從小就開始。

上大學後,他進入台大資管系,半資訊、半管理,開始替企業寫系統。最具代表性的作品,是大學畢業那年開發的「全台第一個大學聯考落點預測系統」,一年就有十萬人使用,甚至把台大管理學院的網路塞爆。「那次經驗讓我深刻體會到,做好一個服務,就能被很多人看見。」

楊立偉念資管研究所博士班,研究主題就是搜尋引擎與語意分析。「算是一路從學術做到產業,核心技術就是處理大量資料、搜尋引擎和語意分析。」楊立偉說,意藍每天處理的資料量極大,「幾千萬筆資料零點幾秒就能回傳,效能非常好。」隨著技術成熟,他開始挑戰更大的資料規模,最終將目標放在分析網路社群聲量與輿情趨勢,也成為意藍的核心業務。

如今意藍資訊股本約2億元,年營收約1.6至1.8億元,最高峰的2022年「營收」曾一舉進2億元;今年上半年獲利2280萬元,年增一成,每股純益1.26元。

被問到AI公司很多,但能商轉成功的不多,意藍怎麼做到?楊立偉坦言,意藍後來找到自己的定位:「我們是一家『AI+數據』公司。」數據變化快速,只要能讓用戶覺得這些資訊「有趣、有用、又非知道不可」,他們自然願意持續使用,這就是我們訂閱制成功的關鍵。輿情和市場情報的即時性,正好符合這個特性,也讓意藍能夠從單次銷售,轉型為長期訂閱的服務。如今意藍的業務已擴展到金融監理、情報分析、資安監測等高含金量領域。

「沒有數據的AI,就是腦補的AI。」楊立偉分享他個人的經營金句,他認為所有分析都靠真實、即時、關鍵資料,而非隨便猜測或套公式,如何「提煉數據成金」是他的成功訣竅。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/11</span>意藍資訊攜手產學界 以社群大數據競賽培育未來數據人才

2025/11意藍資訊攜手產學界 以社群大數據競賽培育未來數據人才

由中華商管教育發展學會、國立臺北商業大學、創集團與意藍資訊共同主辦的「2025全國社群大數據分析校園創新競賽」日前圓滿落幕。本屆賽事命題以「社群大數據 × 企業與公益實務命題」為核心,吸引全國各大專院校共160支隊伍、571名學生報名參賽,透過社群觀測平台與網路輿情分析工具,深度剖析產業趨勢,為品牌發想及擬定行銷策略,充分展現新世代對數據分析與商業應用的熱情與實力。

決賽現場匯聚多位產學界專家,包括中國文化大學行銷所教授駱少康、東吳大學企業管理學系副教授劉秀雯、台灣行銷科學學會顧問邵功新、創集團執行長黃瓊儀,以及意藍資訊策略行銷處副總經理張建文,針對參賽作品的數據解讀能力、創新構想與商業應用價值進行多面向評選。

此次競賽主題涵蓋品牌行銷、產品創新、用戶行為研究等多元議題,展現數據分析在現代商業決策中的核心價值。本屆12強隊伍各自聚焦6家品牌的不同實務挑戰,最終世新大學「淑麗」團隊榮獲第一名,他們以日正食品為研究案例,從族群洞察切入,並結合品牌既有的傳統價值與社群大數據分析,提出兼具創新性與可行性的品牌策略,贏得評審肯定;第二名為國立中興大學「選我們就隊」團隊,他們以馬修嚴選為題,利用大數據深入剖析消費者的購物動機與決策歷程,據此提出更貼近不同世代需求的品牌策略;第三名為國立中興大學「三個銷妹仔」團隊,他們聚焦於臺灣野灣野生動物保育協會,以聲量趨勢、關鍵字分析及正負評論等多元切角分析野灣協會相關的網路輿情,提出提升協會社群影響力及募款成效之解決方案,獲得專家高度評價。

作為數據分析領域的先驅,意藍資訊長期致力於「創新」、「教育」、「人才培育」三大面向,透過持續參與並贊助校園競賽、學術研討會及專業會議,不僅提供創新數據解決方案,更積極培育數據分析領域的專業人才。本次競賽再度印證教育與實務結合的重要性,為學生從學術走向商業應用搭建橋樑。展望未來,意藍將持續推動數據分析與 AI 技術的應用與發展,攜手產學各界共創更加完善的數據生態!

名次 獲獎隊伍
第一名 世新大學公共關係暨廣告學系 – 「淑麗」
第二名 國立中興大學行銷學系 – 「選我們就隊」
第三名 國立中興大學行銷學系 – 「三個銷妹仔」
佳作

「Supernova」、「Uniwater」、「天馬行銷」、「行銷贏家隊」、「豆沙們」、
「品牌推手」、「恆興」、「從使至今」、「隊名要取什麼」

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報 | vol.10 從內容生成到智慧偵查

AI Search 電子報|AI 企業應用亮點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

生成式 AI 如何思考?從大語言模型看懂它的「腦內運作」

生成式 AI 是人工智慧(AI)技術的一個重要類型,而大型語言模型(Large Language Model, LLM)則是目前生成式 AI 在文字生成領域的核心技術基礎。以下將以精簡的內容,帶讀者快速了解三者的關係與運作方式。

人工智慧技術概述與生成式 AI 的定位

人工智慧(AI)包含多種模型與學習方法,各自負責不同任務。常見的 AI 學習方式包含:

  1. 監督式學習:給模型範例和答案,模型從中學到具鑑別力的特徵,進行分類或預測。
  2. 非監督式學習:僅提供資料,不給答案,讓模型自行找出規律與特徵。
  3. 增強式學習:不提供資料,而是給予「目標」與「獎勵規則」,讓模型透過試錯找到最佳策略。

生成式 AI 作為 AI 其中一種類型,通常使用大量未標註資料,讓模型學習語言或內容的分佈與規律,進而生成新的文字、圖像或音訊,不僅能分類或預測,還能解決問題與執行多樣任務。

生成式 AI 的語言生成技術基礎:大型語言模型(LLM)

在文字生成領域,生成式 AI 的核心技術之一是大型語言模型(LLM)。
LLM 會從大量文本資料中,自行學習「詞與詞之間」「句與句之間」的關聯與語言規律,並在收到使用者指令後,生成符合語意與邏輯的回應。
可以把 LLM 想像成「文字接龍」:

  1. 使用者先提供一段問題或內容(上下文)。
  2. 模型依據訓練資料學到的語言規律,預測「下一個最可能出現的字詞」。
  3. 一字一句生成,最後串成完整且連貫的回答。

相較於過去較為專職的自然語言處理(NLP)模型,大型語言模型具備三個主要優勢:

  1. 上下文理解能力更強:生成內容更有邏輯、連貫度更高。
  2. 多任務通用性:不需為每個任務打造不同模型,一個模型即可應付多種語言任務。
  3. 大量資料訓練帶來的知識廣度:掌握更多語法、語意與世界知識,提高回覆品質。

這些能力使 LLM 在許多應用中表現突出,例如:智能客服、文案創作、資料解讀與摘要等,都能藉由 LLM 達成自動化並提升效率。

生成式 AI 的挑戰:可信度與「幻覺」問題

儘管 LLM 能產生高品質內容,但在語言模型的統計運作特性下,仍可能出現「看似合理、實則錯誤」的回答,也就是常說的模型幻覺(Hallucination)。
原因在於:

  • 當模型遇到訓練資料中未出現或不確定的資訊時
  • 會依照語言規律「推測」答案
  • 而非查證或真正理解內容

因此在回答專業領域問題時,模型可能基於語料經驗生成答案,但缺乏真實的參考來源。

解方:RAG(檢索增強生成)技術

RAG(檢索增強生成)是一種補強大型語言模型回答可信度的架構。

為減少幻覺問題並提升回答可信度,近年興起檢索增強生成(Retrieval-Augmented Generation, RAG)技術,它結合了「資料檢索」與「生成式 AI」的優勢。RAG 的流程如下:

  1. 先向外部資料庫或文件進行檢索,取得相關且可信的內容。
  2. 再由模型依據取得的資料生成回答。

好處包括:

  • 減少憑空捏造的可能性
  • 讓回答更接近真實世界資料
  • 增強內容的可追溯性
  • 更適合企業知識庫、客服、法規查詢等具資訊正確性需求的應用情境

RAG 的概念不僅提升生成式 AI 的實務可靠度,也進一步拓展大型語言模型在產業中的應用範圍。

從人工查核到智慧偵查:AI 如何重塑金流分析效率

近年來,虛擬貨幣與數位資產市場快速發展,相關犯罪樣態日益多元。虛擬貨幣因具去中心化、匿名化與跨境流動性高等特性,使執法單位在偵查過程中面臨更大的挑戰。傳統依賴人工比對與文件查核的作業,不僅耗費大量人力與時間,也難以即時掌握複雜的金流脈絡。為提升偵查效能與準確度,政府機關積極推動數位偵查轉型,透過導入 AI 與大數據分析技術,強化資料運用與決策支援能力,逐步邁向智慧化執法的新階段。

為何偵查作業需導入 AI 技術?

隨著數位資產市場與虛擬貨幣交易蓬勃發展,相關犯罪手法與樣態也呈現多樣化趨勢,跨境交易頻繁、匿名性高且金流分散等,使執法單位面臨前所未有的挑戰。在偵查過程中,相關人員常需以人工從大量錢包地址與交易紀錄等資料中比對可疑關聯,而此種以人工比對與查核為主的偵查方式可能面臨的困難點包括:

  1. 資料分散、難以整合:交易紀錄散落於不同交易所,查找過程不僅費時,更仰賴交易所的主動配合。
  2. 人工查核耗時:偵查人員需自行分析金流紀錄與交易數據,工作量龐大且較難完全避免疏漏。
  3. 缺乏即時分析能力:傳統流程難以即時偵測異常金流或可疑關聯,易錯過最佳追查時機。
  4. 資訊視覺化不足:偵查人員需自行繪製幣流分析圖以呈現金流脈絡,難以快速掌握全局。

面對龐雜金流結構與快速變動資訊,導入 AI 與資料分析技術可協助自動化整合多源資料、提升金流比對與異常偵測能力,強化決策支援與案件研析成效。

AI 金流偵查系統建置成效

為回應上述挑戰,政府機關的相關單位近年積極導入 AI 技術,建置專屬的虛擬貨幣金流偵查系統,實現資料整合與分析自動化。意藍資訊作為台灣代表性的智能數據廠商,協助執行虛擬貨幣金流偵查系統專案,以下為技術基礎與應用效益:

  • 技術基礎與平台特性 
    系統以「AI Search for KM 新一代知識搜尋與知識問答系統及工作平台」為基礎,以 RAG 架構為核心,並整合搜尋引擎、向量資料庫、語意分析及大型語言模型,可針對特定領域資料進行理解與訓練,支援高精度的知識檢索與智能問答。且平台問答之回覆內容均可追溯來源,確保資料可靠性;同時,亦支援地端運行與權限控管,可以有效避免洩漏機敏資訊。
     
    在此基礎上,系統整合公開虛擬貨幣金流紀錄、內部案件資料及相關法律監理文件等,經結構化處理後形成資料庫,確保可依偵查任務需求調用對應資訊,最終建置出可於地端安全運行的「虛擬貨幣金流偵查系統」。
     
  • 核心功能與效益
    1. 核心功能:金流查詢
      採用 NL2SQL 技術,使用者可透過自然語言查詢交易紀錄,如詢問「這筆交易資金流向哪錢包?」系統便會自動轉換為查詢指令並回傳結果,並以視覺化方式呈現資金流向,大幅降低查詢門檻。此功能能夠節省資料比對與分析成本,縮短案件初步調查時間,提升分析準確性。 
    2. 核心功能二:偵查報告生成
      系統可根據過往相關之偵查與法律文件,自動生成偵查報內容並提供偵查建議,減輕人工彙整負擔,確保報告結構與語意一致,提升案件報告品質與流程效率 
    3. 核心功能三:偵查報告真偽驗證
      輔助驗證偵查報告真實性,根據實際數據與推論規則檢核報告內容,標示潛在錯誤或矛盾之處,強化報告可信度與司法採信力。

整體而言,透過此 AI 金流偵查系統的導入,偵查人員可直接以自然語言快速完成資料查詢、金流分析與報告生成,讓偵查流程更即時、精準、安全,顯著提升執法作業在效率、準確度與資訊安全三方面的表現,為虛擬貨幣相關的犯罪偵查提供全方位的支持。未來,此技術亦可延伸應用於其他犯罪樣態與偵查領域,推動執法作業邁向全面智慧化。 

想了解更多 AI 實戰案例與導入洞察歡迎點擊查看其他期電子報

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/11/05</span><br>意藍 AI Search 新品發布會:AI 智能數據啟動企業未來

2025/11/05
意藍 AI Search 新品發布會:AI 智能數據啟動企業未來

從藍圖到落地,AI Search 引領的智能轉型新時代

AI 發展正從探索階段,走向企業真實落地與價值實現。意藍資訊(6925)於今年推出全新 AI Search 解決方案,結合資料萃取、智能分析與 AI 技術,並具備多元整合能力與彈性 API 串接功能,協助企業全面升級數據力與決策力!
AI Search的誕生,對意藍而言不只是產品,更是我們對推動智慧應用、提升決策效率的實踐。感謝共襄盛舉的貴賓們!

⁕ 與會者回饋 ⁕

user, interface, agent, usability, account, profile, man

數位行銷主任

從研究數據了解各世代的差異、
對於日後公關活動或會員經營有可切入之處

user, interface, agent, usability, account, profile, man

數位行銷主任

從研究數據了解各世代的差異、對於日後公關活動或會員經營有可切入之處

user, interface, agent, usability, account, profile, woman

行銷部社群

有效解得了工具的運用方式,
分析內容有深度,受益良多!

user, interface, agent, usability, account, profile, woman

行銷部社群

有效解得了工具的運用方式,分析內容有深度,受益良多!

user, interface, agent, usability, account, profile, man

專案經理

實際落地展示、研究相當實用,
藍圖、流程分享也富啟發性

user, interface, agent, usability, account, profile, man

專案經理

實際落地展示、研究相當實用,藍圖、流程分享也富啟發性

⁕感謝媒體報導 ⁕

生成式 AI 正加速推動企業邁向智慧化新時代,

意藍資訊(股票代號:6925)長期深耕數據處理、搜尋技術與語意分析領域,憑藉多年技術研發與產業實務經驗,

於 11 月5日舉辦「AI Search 新品發布會:AI 智能數據啟動企業未來」,正式發表全新升級的 AI Search 解決方案。

生成式 AI 正加速推動企業邁向智慧化新時代,意藍資訊(6925)長期深耕數據處理、搜尋技術與語意分析領域,憑藉多年技術研發與產業實務經驗,今(5)日舉辦「AI Search 新品發布會…繼續閱讀

意藍資訊5日發表AI Search智能搜尋產品,主要鎖定五大應用場景。意藍總經理楊立偉表示,AI智能搜尋業務今年成長率逾6成,明年亦能維持同樣的成長力道…繼續閱讀

鎖定企業導入AI時「害怕出錯」的普遍焦慮,專注於AI數據的意藍資訊,正式推出企業級AI搜尋解決方案,將第一槍瞄準對數字精準度要求最嚴苛的金融業…繼續閱讀

意藍資訊(6925)正式發表Al Search新產品,結合資料萃取、智能分析與自研大語言模型eLand GOAT,協助企業升級數據力與決策,強化公司在AI搜尋服務領域技術競爭力…繼續閱讀

首家AI數據分析業者意藍資訊(6925)昨(5)日發表Al Search新產品,強化公司在AI搜尋服務的技術與產品,結合資料萃取、智能分析與自研大語言模型eLAND GOAT,協助企業全面升級數據力與決策…繼續閱讀

⁕ 精彩亮點節錄 ⁕

洞察報告》AI Agent 時代來臨!年度 AI 應用實務一次看

洞察報告》
AI Agent 時代來臨!
年度 AI 應用實務一次看

意藍資訊團隊摘錄活動議程中的「AI落地指南:用生成式 AI 打造決策加速器」,除了剖析生成式 AI 的技術發展趨勢外,也說明 AI Agent 在工作上的價值與應用面向。此外,更展示企業實際導入 AI 的案例,分享 AI 可落地應用的方案實例,一窺 AI 如何真正幫助企業提升效率、降低風險,並改變未來的工作方式。

⁕ 精彩議程 ⁕

圖片1

「 智慧代理人時代來臨,結合 AI 才能高效應用!」

想知道更多生成式 AI 應用的解決方案嗎?

想了解導入 AI 代理人的優勢嗎?

那就不能錯過「AI Search 電子報」及「AI 知識庫」!帶您深入了解生成式 AI!

「智慧代理人時代來臨,

結合 AI 才能高效應用!」

想知道更多生成式 AI 應用的解決方案嗎?

想了解導入 AI 代理人的優勢嗎?

那就不能錯過「AI Search 電子報」及「AI 知識庫」!帶您深入了解生成式 AI!

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴。

錯過了本場沒關係,歡迎訂閱電子報!

除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,以及 AI 新知與應用案例,

更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴!

錯過了本場沒關係,歡迎訂閱電子報,除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,以及 AI 新知與應用案例,更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

Copyright eLAND Information Co., Ltd.