AI Search 電子報 | vol.07 四大模組打造 AI 決策循環,開啟企業新解方!

AI Search 電子報 | vol.07 四大模組打造 AI 決策循環,開啟企業新解方!

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

AI 智能決策循環:四大模組打造企業營運痛點新解方

本期報告摘錄意藍《年度 AI 落地案例一次看:企業決策與實務應用大解密》研討會精華,針對 AI Agent 在企業工作流程上的價值與應用面向進行說明,並對於企業經常面臨的痛點提出「AI 智能決策循環」解方,透過四種功能模組幫助組織運作智慧化。此外,本期也將透過證券業實際導入 AI 的案例,分享 AI 落地應用情境,揭示 AI 如何協助企業提升效率、降低風險。

AI Agent 價值與應用

從解決問題到主動串接 企業知識運用再升級

AI Agent 已由單純的問答工具,進化成能融入業務流程、主動執行任務的數位協作夥伴。企業透過導入 AI Agent,不僅能優化流程、提升效率,還能加速 AI 的落地,進而推動更全面的數位轉型。AI Agent 的價值體現在多元的企業場景,下方分享五種常見應用: 

  1. 智慧客服系統:協助民眾快速獲取資訊,減輕人力負擔、提升服務體驗。
  2. 內部客服助理:幫助客服人員即時查找內部資料,提升回覆效率與服務品質。
  3. 金融投資服務:分析新聞資訊對企業股價的正負面影響,提供投資人與分析師判斷依據。
  4. 金融風控情報:持續監測金融資訊,並且即時通報潛在風險事件與異常。
  5. 輔導作業助理:檢核文件的一致性,生成報告並分析潛在風險,全面提升作業效率。

由此可見,企業若能與 AI Agent 協作,將能強化決策力與市場反應速度,並在多元場景中展現價值。

AI 智能決策循環

動態機制驅動模組 自主檢核持續優化

AI Agent 展現了巨大的潛力,但若要讓它真正成為企業日常的一部分,必須先解決導入上的難題。在 AI 落地的過程中,企業最常面臨的四大挑戰是:「資料來源多且分散」、「人力不足」、「任務時效性高」以及「跨部門知識斷裂」。
針對這些痛點,意藍資訊提出由四大功能模組組成的 AI 智能決策循環,透過「整合、推論、生成、檢核」的流程,打造持續運作且不斷優化的知識系統,協助組織有效解決管理與營運問題。

▲ AI 智能決策循環 流程圖

在智能決策循環中,四大模組分別承擔不同任務。首先,「動態監控與情報整合」模組負責蒐集來自主管機關公告、新聞以及財務報表等外內部重要資訊,讓組織能即時掌握政策與產業的最新動態。接著,透過「數據推論與關聯分析」模組將蒐集到的資訊轉化為洞察,辨識其中的風險與機會,並進一步進行關聯分析與影響推論,協助決策者全面掌握資訊。

而「內容生成與專業論述」模組,則將前一階段的洞察落實為研究報告、簡報或 FAQ 等具體產出,使資訊能被傳遞與應用。最後,「品質維持與異常監測」模組會透過檢核與修正,避免產出的資料有誤或缺乏邏輯性,並將檢核後的結果反饋至監控端,使模型得以持續修正,形成自我優化的閉環運作系統。

針對以上 AI Agent 導入架構,在本期及往後兩期電子報中,我們將分別以證券業、金融業、食品業的導入實例進行應用展示。藉由產業案例解析,更清楚說明 AI Agent 如何融入不同產業的業務流程,以及在多元任務階段中的應用價值。

企業規範更新快、投資關係難辨識?AI 助證券業打造智慧流程

在證券業中,資訊的即時性與正確性十分重要,尤其對於承銷與輔導部門而言,從企業申報資料、產業政策更新到揭露文件,每一個環節都影響著申請上市的成功與否,以及風險控制。而透過導入生成式 AI ,組織不僅能減少人工作業的成本,也能在情報蒐集、資料比對與內容產出上實現自動化,提升工作流程效率。

▲ 證券業 x AI 導入實務 流程圖

首先,透過「動態監控與情報整合」模組,AI 會每日持續追蹤證交所公告、金管會規範與產業政策,讓團隊第一時間掌握能影響流程的變化,即時調整方向,降低潛在承銷風險。接著,在「數據推論與關聯分析」模組中,AI 藉由比對董監事名單與關係人清單,快速計算並推演出完整的企業結構與潛在關係人,揭示隱藏的投資結構,避免因資訊不透明造成的判斷偏差

▲ 數據推論與關聯分析 AI 應用 示意圖

此外,證券業亦能藉由「內容生成與專業論述」模組,請 AI 協助擬定公開說明書草稿與揭露重大風險,使組織得以讓專業人員專注於內容修訂與專業判斷等專業性工作任務,更有效運用人力。最後,應用「品質維持與異常監測」模組,AI 能協助組織自動比對申報文件、財務報表與公告內容的一致性,並透過即時標記功能,防堵錯誤或違規揭露的風險,確保資料的品質與合規性。

▲ 品質維持與異常監測 AI 應用 示意圖

綜上所述,透過四大模組,包含情報蒐集、數據驗證、文件撰寫到品質控管,證券業導入 AI 的應用實例不僅優化了部門運作方式,也大幅提升任務執行效率與風險管理能力,更展現出 AI 在金融專業領域的實用價值。

11/5 (三) 意藍 AI Search 新品發布會🔥

意藍資訊將於 11/5 (三) 舉辦新品發布會,
結合資料萃取、智能分析與 AI 技術,推出全新 AI Search 解方,
助力企業升級數據力與決策力,全面掌握 AI 應用價值。
立即前往報名!

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/09</span>剖析年輕世代趨勢,揭開 Z 世代價值觀

2025/09剖析年輕世代趨勢,揭開 Z 世代價值觀

本文原刊載於《台大校友雙月刊》第 161 期,由本公司總經理楊立偉博士撰寫,探討 Z 世代在社群上的變化與世代觀點的流動。文章透過 OpView 平台與 AI 語意分析技術,對社群討論進行觀測與剖析,不僅揭示年輕世代的價值觀與多元思維,也強調其應用於研究與社會觀察上的價值。
以下節錄部分:

近年來,「網路聲量觀測」(或稱社群聆聽,Social Listening)技術蓬勃發展,筆者和筆者的團隊也一直致力於將社群大數據結合 AI 語意分析,用以洞察社會脈動與消費趨勢。以下分享筆者與意藍 OpView 團隊近年發佈的一份 Z 世代社會研究報告,介紹其中的方法與發現,並討論其意義與侷限。

社群聆聽的原理與應用:AI 如何解讀網路聲量?

所謂網路聲量觀測,就是大規模瀏覽並分析網路上的龐大公開資料,以了解民眾對各種議題、政策、產業、乃至於企業品牌的真實看法。傳統上、民意調查常需要大量時間與人力,透過問卷訪談才能取得有限的意見,而且受訪者有時未必吐露真心想法。而社群聆聽採取非介入式方法,直接在網路上觀測人們公開發表的意見,當數量大到某個程度後,就有可參考性,而且 AI 處理速度快,具有時效性上的優勢,因此這個方法常作為傳統研究的輔助之用。事實上,全球已有許多成功的社群大數據研究案例,該方法以高時效性、高代表性和易執行等特性,日益成為企業與學術研究的新利器。

在實務運作上,社群聆聽透過搜尋引擎爬蟲 24 小時不間斷地瀏覽資料,來源涵蓋各大社群(如 Facebook、Instagram、YouTube等)、公開的媒體、討論區與論壇、以及部落格等,以筆者團隊所建立的 OpView 平台為例,每日可瀏覽超過 60 億字的資料,且即時性可達 15 分鐘內。接著再建立大規模的數據產線,運用先進的自然語言處理(NLP)和 AI 語意分析技術進行加工分析,例如判斷主題、判讀情緒、進行聲量的分類和統計等,將龐雜的文字內容轉換為結構化的數據,以直觀的資料視覺化介面呈現,包括折線圖、長條圖、文字雲、詞頻統計、情緒比值等。透過這樣的 AI 輔助,研究者只需專注於解讀數據並發掘洞見,大大降低了人工處理分析大量資料的負擔。

網路聲量觀測的應用非常廣泛。在企業界,行銷人員可藉此追蹤品牌口碑、了解消費者需求以制定行銷策略,產品經理可以發現市場趨勢與新商機。公關與客服單位則能即時監測輿情,迅速因應危機,維護品牌聲譽。在政府與公共政策領域,決策者也開始重視這類社群大數據工具,用來解析民意風向,觀測民眾對公共議題的討論,讓政府單位可以更快速地掌握輿論趨勢並作出反應,讓政策溝通更貼近民意。甚至在學術研究方面,社群聆聽打破了傳統問卷與焦點訪談的限制,研究者能藉助這類完整的數據,長期、大樣本地觀測社會現象。

網路聲量觀測如何描繪臺灣 Z 世代?

「Z世代」泛指 1997 年至 2010 年代初期出生的族群,他們是「數位原生代」,成長於網路普及的環境。因此使用網路聲量觀測方法來研究 Z 世代,是非常適合的。首先,筆者的團隊針對 Z 世代經常利用的社群或討論區,加上 Z 世代常用的語彙詞集,從大量的網路公開資料中,過濾出二個年度關於 Z 世代的看法及討論,這些內容超過 30 億個字。接著再利用 AI 語意分析的協助,將這些討論切分為不同的主題,例如金錢觀、工作觀、感情觀、消費習慣等,從文本中萃取重要的觀點,並描繪出 Z 世代的輪廓。此外,也透過 AI 技術的輔助,過濾掉相關性較低、於研究過程中較無參考價值的部分,例如關於產品廣告的一般性討論、抽獎文、過短的內容等,最終產出一份大規模分析臺灣 Z 世代的報告。

由社群大數據及 AI 分析角度下的臺灣 Z 世代

Z世代是什麼樣子?

完整的臺灣 Z 世代報告內容近 200 頁,以下節錄報告中的主要觀點,包括價值觀、消費行為與職場態度等。可以發現,Z 世代一方面注重提升生活品質以滿足心理需求,另一方面也自嘲式地意識到現實財務壓力下的「精緻窮」處境:既想生存,也要生活。

1. 金錢觀與消費態度:

現今多數年輕人生長於物質豐盛但競爭激烈的時代,他們一方面對高漲的生活(例如在城市生活的高房租和高物價)成本感到焦慮;而另一方面,享受高生活品質是他們的重要價值觀。不少Z世代年輕人認為,與其辛苦存錢仍無法買房,不如透過日常消費來滿足內心,追求精神與物質的平衡。因此,他們當中出現了所謂「精緻窮」的現象:即使財富累積有限,也願意在娛樂、運動、學習、旅遊等提升自我價值的領域花錢,投資自我,或是獲取即時的幸福感。此外,值得一提的是,這並不代表年輕世代在理財上不理性。相反地,報告中發現多數 Z 世代對理財投資相當有興趣且態度謹慎:他們熱衷學習各種投資理財知識,勇於嘗試高報酬率的投資工具(如股票、虛擬貨幣),但同時也非常強調風險管理,偏好在瞭解自身風險承受度後再做決策。

2. 職場態度:

相較於父母輩講求「一份工作做到底」,年輕世代更能接受多元嘗試與職涯曲線發展。他們中許多人在正職工作之外還積極發展副業或斜槓身分,利用下班和閒暇時間進修技能、經營副業,以累積不同領域的經驗。值得注意的是,不少年輕人也強調職涯成就不一定要靠跳槽實現;換言之,即使留在原公司,也可以透過爭取多元的專案或在業餘經營副業來豐富自我。這反映出 Z 世代對工作抱持高度自主性和彈性的價值觀,他們追求的是工作與興趣結合、多元且彈性的職場模式,而非朝九晚五、一成不變的傳統路徑。

年輕世代解讀

結語

社群聆聽能提供的觀測資料來源,規模遠非傳統問卷所能比擬。且能同時捕捉更真實的意見脈動。加上 AI 技術的快速進步,有了這類工具,學者可以更有效地驗證社會理論、發現新興現象,甚至跨學科地探索網路輿情與經濟、政治指標間的關聯,為社會科學帶來新的視野。

AI Search for KM
新一代 GenAI 知識管理工作平台

AI Search for KM 即新一代GenAI 知識管理工作平台,意藍整合生成式 AI、高速搜尋引擎、獨家 NLP 技術,並擁有領先業界的知識管理經驗,為組織單位實現更卓越且智能的知識搜尋與問答服務。

OpView社群口碑資料庫

OpView 是台灣首屈一指的 AI 網路聲量觀測服務,以先進的語意分析技術和雲端架構,協助組織單位透過平台輕鬆追蹤、分析輿情,並深入洞察社群關鍵情報,掌握至勝先機。

AI Model
企業專屬AI模型

運用高品質知識、外部數據或組織內部專屬資料進行 AI 訓練,並依據客戶需求,串接內外部平台,以地端或雲端模式提供客製化服務。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2025/09/16</span></br>年度AI落地案例一次看:企業決策與實務應用大解密

2025/09/16
年度AI落地案例一次看:企業決策與實務應用大解密

5 場精選主題 一站看懂企業 AI 實戰佈局關鍵

生成式 AI 熱潮延燒,AI Agent 應用快速崛起,企業不再只是觀望技術發展,而是積極探索如何結合實際業務,推動智慧轉型。

今年 AI 數據年會將從最新技術趨勢切入,聚焦 AI 在企業營運中的實戰應用,協助管理者掌握導入契機與關鍵佈局策略。

意藍資訊(6925)持續深耕 AI 領域,作為首屈一指的智能數據代表廠商,將帶領您探索並掌握 AI 賦能帶來的無限潛力!

非常感謝共襄盛舉的貴賓們!

⁕ 與會者回饋 ⁕

user, interface, agent, usability, account, profile, man

數位行銷主任

從研究數據了解各世代的差異、
對於日後公關活動或會員經營有可切入之處

user, interface, agent, usability, account, profile, man

數位行銷主任

從研究數據了解各世代的差異、對於日後公關活動或會員經營有可切入之處

user, interface, agent, usability, account, profile, woman

行銷部社群

有效解得了工具的運用方式,
分析內容有深度,受益良多!

user, interface, agent, usability, account, profile, woman

行銷部社群

有效解得了工具的運用方式,分析內容有深度,受益良多!

user, interface, agent, usability, account, profile, man

專案經理

實際落地展示、研究相當實用,
藍圖、流程分享也富啟發性

user, interface, agent, usability, account, profile, man

專案經理

實際落地展示、研究相當實用,藍圖、流程分享也富啟發性

⁕ 精彩亮點節錄 ⁕

洞察報告》AI Agent 時代來臨!年度 AI 應用實務一次看

洞察報告》
AI Agent 時代來臨!
年度 AI 應用實務一次看

意藍資訊團隊摘錄活動議程中的「AI落地指南:用生成式 AI 打造決策加速器」,除了剖析生成式 AI 的技術發展趨勢外,也說明 AI Agent 在工作上的價值與應用面向。此外,更展示企業實際導入 AI 的案例,分享 AI 可落地應用的方案實例,一窺 AI 如何真正幫助企業提升效率、降低風險,並改變未來的工作方式。

⁕ AI 知識庫 ⁕

不只是懂指令的AI!探索AI Agent 如何改寫決策流程與工作模式

不只是懂指令的AI!
探索AI Agent 如何改寫決策流程與工作模式

AI知識庫_文章BN_AI Agent

在「全方位 AI 代理人:打造企業全新的數據力」議程中,我們分享了隨著人工智慧技術不斷創新突破,企業品牌能透過 AI 代理人做到的是越來越多,例如在主動判斷模組並生成資訊、即時掌握宏觀資訊等,提升作業效率,也開拓了企業提升各項決策精準度的可能性。針對此趨勢變化,意藍資訊的 AI Agent 便提供企業組織更加智慧化的應用。

Part 2 AI Agent工作流程解析
Part 3 AI Agent 應用情境
Part 2 AI Agent工作流程解析
Part 3 AI Agent 應用情境

⁕ 精彩議程 ⁕

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴。

錯過了本場沒關係,歡迎訂閱電子報!

除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,以及 AI 新知與應用案例,

更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴!

錯過了本場沒關係,歡迎訂閱電子報,除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,以及 AI 新知與應用案例,更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

政府AI應用實例 :AI Agent 助力員額評鑑智慧化

政府AI應用實例 :AI Agent 助力員額評鑑智慧化

政府 AI 應用實例 :
AI Agent 助力員額評鑑智慧化探索

近年來,各級政府積極推動數位轉型,各種AI 工具被廣泛導入於資料處理、行政作業與公共服務中,為智慧治理奠定了基礎。其中,「員額評鑑」是需要跨部會協作的大型作業,過程中必須整合來自不同單位的大量人事資料、並加以比對與分析,以作為人力配置與政策規劃的重要依據。這類作業流程在傳統做法多仰賴人工,往往需要投入可觀的時間與人力來完成,而隨著資料規模逐年增加,以及各政府單位對政策即時性與精準度的需求提升,如何運用新技術來提升效能,已成為重點發展方向。

為何員額評鑑專案需導入AI技術?

員額評鑑是人力配置與政策規劃的重要基礎,然而在傳統作業流程中仍存在一些挑戰,主要包含以下幾個面向:

  1. 資料分散與格式不一:各單位的人事資料往往分布於不同系統,各自採用的格式與欄位設計可能也不完全一致,因此在整合過程中需要額外的整理與比對步驟。可以根據使用者指定的目標,自行規劃任務執行流程。
  2. 計算規則繁複:評鑑作業涉及缺額比率、配置比例等多種指標,每一項都需要依循特定規則計算,當數據量龐大時,往往需要投入大量人力與時間。
  3. 報告撰寫一致性:由不同人員撰寫的分析報告,常因表達方式或重點選擇不同,而在結構與呈現上存在差異,使得跨單位報告之間,雖各自完整,但難以直接逐項對照。
  4. 決策資訊延伸有限:傳統報告多偏重數字與表格呈現,雖能反映現況,但較少延伸至趨勢研判或策略建議等,若要做為高層決策時的參考依據,則需再投入額外時間進行解讀。
  5. 評鑑作業的持續性需求:員額評鑑不是單次作業,而是需長期推動與追蹤的核心管理機制,過程中必須同時參考當期數據、歷年人力發展計畫以及現行施政方針,進行跨期的比對與差異分析;若僅依靠人工,可能造成比對標準不一致或耗費過多時間。

員額評鑑專案導入 AI Agent 之效益

針對上述痛點,導入AI技術成為理想的解決方案。其中,「AI Agent」與一般仰賴接收指令、並自既有資料庫中搜尋回傳答案的生成式AI相比,具備了任務導向與自主規劃能力,不僅能進一步理解指令,還能主動拆解任務流程、規劃執行步驟,在更複雜的任務中發揮價值;而在公共治理的情境中,這樣的特性特別適用於員額評鑑這類需要跨部會協作、涵蓋資料龐大的任務。 意藍作為台灣代表性的智能數據廠商,便曾協助公部門單位執行員額評鑑之專案。在專案中,我們以AI Agent架構貫穿解決方案,並結合「自動化流程」與「大語言模型生成」,協助整合不同來源的資料、依規則完成計算與標註,進一步生成具體的分析與建議。 專案執行主要分為四個層面,各自帶來的效益如下:
  1. 資料整合與分類:透過自動化工具,將不同來源的員額數據表格與其他業務系統資料彙整成統一格式,並依照特定評鑑面向進行分類。這一步驟大幅降低了人工清理資料的時間成本,並確保後續分析的基礎更為穩定。
  2. 自動化計算與重點標註:系統依照既定規則,自動完成缺額比率計算,並即時以紅字粗體標註超過整體平均值的單位。這樣的標註機制能幫助決策者迅速聚焦於需優先關注的重點,而不必再逐一比對大量數據。
  3. AI 報告生成與摘要:借助大語言模型,將枯燥的數據轉化為文字敘述,自動生成完整報告。報告中不僅包含增減員因素分析,還能提出具體的改善建議與政策回應,例如留才策略、配置建議等,使報告真正具備決策參考價值。
  4. 共通性問題分析:除了單位別的數據與建議外,AI Agent 也能跨單位自動彙總共通性問題,並生成全域性的分析。這使得高層在制定政策時,不再只看到單點狀況,而能獲得更全面的參考視角。

綜上所述,AI Agent 的導入全面優化了員額評鑑流程,從資料整合、計算、報告撰寫到跨單位分析,都能以更高的效率及一致性完成,不僅減少人力負擔,更提升成果的決策參考價值,驗證了智慧公共治理中的AI應用潛力。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

AI Search 電子報 | vol.06 企業如何與 AI Agent 協作打造高效工作流程?

AI Search 電子報 | vol.06 企業如何與 AI Agent 協作打造高效工作流程?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

從理解到協作:AI Agent 為企業打造高效工作流程

前 2 年,企業導入 AI 主要用來回應問題或加快資訊處理速度。但自今年起,企業更期待 AI 能主動思考、完成多步驟任務,這也讓「AI Agent(AI代理)」成為新一代 AI 應用的核心焦點。不同於先前只能被動執行指令的 AI,AI Agent 具備自主感知、決策與行動能力,能像一位可靠的虛擬助理,協助你完成多步驟任務、主動分析資訊,甚至隨著使用次數越多越聰明。本文將帶你全面認識 AI Agent 的概念、運作流程與實際應用價值。

什麼是AI Agent(AI代理)?

AI Agent 定義 / 基本概念

AI Agent,是一種具備自主決策與行動能力的人工智慧系統。與傳統 AI 需要明確指令才能運作不同,AI Agent 不僅能理解任務本身,更能推敲背後的目標、從環境中感知資訊,並根據累積的經驗做出最佳決策;簡單來說,它不只是「能做」,而是「知道為何做、該怎麼做、接下來該做什麼」。AI Agent 通常具備以下四大能力:

  1. 目標導向(Goal-oriented):可以根據使用者指定的目標,自行規劃任務執行流程。
  2. 感知能力(Perception):能自外部環境或使用者互動中,擷取關鍵資訊。
  3. 記憶與學習(Memory & Learning):擁有記憶機制,可學習並累積過去的經驗,進一步優化未來表現。
  4. 自主行動(Autonomous Action):能主動採取行動,如呼叫 API、使用工具、完成多步任務等。
AI Agent 與一般生成式AI的差異

一般的生成式 AI 多半仰賴輸入指令來完成特定任務,例如當使用者輸入問題時,AI 便根據資料庫回傳答案。而 AI Agent 則更進一步強調「任務導向」與「自主規劃」,它不僅聽得懂指令,更能主動思考「要怎麼完成這項任務最有效率」。
舉例來說,如果你希望 AI 幫你撰寫一份市場報告,一般的 AI 應用能基於所學習過的知識來回應問題;而 AI Agent 則會主動搜尋多個資料來源、整合內容、過濾重複資訊,甚至回顧以往你提供的文字風格偏好,自動調整格式與語氣,自主性和靈活性大幅提升,真正成為一位可靠的虛擬助理

AI Agent 工作流程解析

隨著 AI Agent 技術成熟,其應用場景已從簡單的聊天對話,逐漸延伸到多步驟、跨系統的企業任務處理。以下列舉 5 個高潛力應用場域:

  1. 客戶服務:不只是回覆問答,AI Agent 更能記住過往對話脈絡、主動追蹤處理進度,甚至呼叫內部 CRM 系統查詢資訊。
  2. 推薦系統:透過 AI Agent,電商零售平台可根據使用者站內行為與搜尋內容,主動推薦合適商品,並整合庫存、優惠與物流資訊,提升購物體驗與下單意願。
  3. 法務工作:AI Agent 能支援提供案件摘要、撰寫法律文件草案、查找相關判例等任務,提升法務工作效率與準確性。
  4. 金融投資:即時分析市場資訊、監控資產波動,並根據個人投資偏好,提出個人化的理財建議,或執行條件式自動交易。
  5. 市場輿情分析與策略規劃:AI Agent 能接收開放式提問,自動檢索最新網路聲量趨勢、熱門關鍵詞等資料,生成結論或建議,協助企業快速掌握輿情風向與行銷重點。

綜上所述,AI Agent 的出現,象徵著企業 AI 應用邁入新階段,從被動使用工具,到擁有一位能主動協助任務的智慧虛擬助理。在生成式 AI 已成標配的當下,具備任務理解與自主執行能力的 AI Agent,正成為企業深化數位轉型的關鍵,透過減少重複性工作、加快決策流程、優化資源配置,AI Agent 能有效提升整體營運效能,為企業打造更高效、智慧的營運模式。

公共治理新利器:AI 在員額評鑑的應用效益

近年來,各級政府積極推動數位轉型,各種 AI 工具被廣泛導入於資料處理、行政作業與公共服務中,為智慧治理奠定了基礎。其中,「員額評鑑」是需要跨部會協作的大型作業,過程中必須整合來自不同單位的大量人事資料、並加以比對與分析,以作為人力配置與政策規劃的重要依據。這類作業流程在傳統做法多仰賴人工,往往需要投入可觀的時間與人力來完成,而隨著資料規模逐年增加,以及各政府單位對政策即時性與精準度的需求提升,如何運用新技術來提升效能,已成為重點發展方向。

為何員額評鑑專案需導入 AI 技術?

員額評鑑是人力配置與政策規劃的重要基礎,然而在傳統作業流程中仍存在一些挑戰,主要包含以下幾個面向:
  1. 資料分散與格式不一:各單位的人事資料往往分布於不同系統,各自採用的格式與欄位設計可能也不完全一致,因此在整合過程中需要額外的整理與比對步驟。
  2. 計算規則繁複:評鑑作業涉及缺額比率、配置比例等多種指標,每一項都需要依循特定規則計算,當數據量龐大時,往往需要投入大量人力與時間。
  3. 報告撰寫一致性:由不同人員撰寫的分析報告,常因表達方式或重點選擇不同,而在結構與呈現上存在差異,使得跨單位報告之間,雖各自完整,但難以直接逐項對照。
  4. 決策資訊延伸有限:傳統報告多偏重數字與表格呈現,雖能反映現況,但較少延伸至趨勢研判或策略建議等,若要做為高層決策時的參考依據,則需再投入額外時間進行解讀。
  5. 評鑑作業的持續性需求:員額評鑑不是單次作業,而是需長期推動與追蹤的核心管理機制,過程中必須同時參考當期數據、歷年人力發展計畫以及現行施政方針,進行跨期的比對與差異分析;若僅依靠人工,可能造成比對標準不一致或耗費過多時間。

員額評鑑專案採用 AI Agent 之效益

針對上述痛點,導入 AI 技術成為理想的解決方案。其中,「AI Agent」與一般仰賴接收指令、並自既有資料庫中搜尋回傳答案的生成式 AI 相比,具備了任務導向與自主規劃能力,不僅能進一步理解指令,還能主動拆解任務流程、規劃執行步驟,在更複雜的任務中發揮價值;而在公共治理的情境中,這樣的特性特別適用於員額評鑑這類需要跨部會協作、涵蓋資料龐大的任務。

意藍作為台灣代表性的智能數據廠商,便曾協助公部門單位執行員額評鑑之專案。在專案中,我們以 AI Agent 架構貫穿解決方案,並結合「自動化流程」與「大語言模型生成」,協助整合不同來源的資料、依規則完成計算與標註,進一步生成具體的分析與建議。

專案執行主要分為四個層面,各自帶來的效益如下:

  1. 資料整合與分類:透過自動化工具,將不同來源的員額數據表格與其他業務系統資料彙整成統一格式,並依照特定評鑑面向進行分類。這一步驟大幅降低了人工清理資料的時間成本,並確保後續分析的基礎更為穩定。
  2. 自動化計算與重點標註:系統依照既定規則,自動完成缺額比率計算,並即時以紅字粗體標註超過整體平均值的單位。這樣的標註機制能幫助決策者迅速聚焦於需優先關注的重點,而不必再逐一比對大量數據。
  3. AI 報告生成與摘要:借助大語言模型,將枯燥的數據轉化為文字敘述,自動生成完整報告。報告中不僅包含增減員因素分析,還能提出具體的改善建議與政策回應,例如留才策略、配置建議等,使報告真正具備決策參考價值。
  4. 共通性問題分析:除了單位別的數據與建議外,AI Agent 也能跨單位自動彙總共通性問題,並生成全域性的分析。這使得高層在制定政策時,不再只看到單點狀況,而能獲得更全面的參考視角。

綜上所述,AI Agent 的導入全面優化了員額評鑑流程,從資料整合、計算、報告撰寫到跨單位分析,都能以更高的效率及一致性完成,不僅減少人力負擔,更提升成果的決策參考價值,驗證了智慧公共治理中的 AI 應用潛力。

2025 AI 數據年會線上場
2025 意藍 AI 數據年會線上場 熱烈報名中!

線上場次即將在10/1(三) 舉行,
帶您一次掌握企業決策、產業應用、落地案例,
歡迎前往報名!

AI Search 電子報 | vol.05 企業不只部署 AI,該如何透過 Fine-tuning 找到最佳解?

AI Search 電子報 | vol.05 企業不只部署 AI,該如何透過 Fine-tuning 找到最佳解?

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

不只是訓練,更是優化:Fine-tuning 在企業 AI 應用的角色

隨著 AI 技術的蓬勃發展,AI 大語言模型的應用也日益廣泛,從企業決策到內容生成,各行各業都在探索其潛力。然而,AI 模型有時無法準確回應特定需求,或因對特殊領域的知識有限而產生錯誤資訊,此時除了檢索增強生成(Retrieval-Augmented Generation,RAG)技術外,就需要透過 Fine-tuning(微調)技術來進一步優化、提升模型準確度。本文將帶您了解Fine-tuning的運作原理,並介紹其多元的應用與商業價值。

認識 Fine-tuning(微調)

什麼是 Fine-tuning?
Fine-tuning,也就是微調,是一種針對既有 AI 大語言模型進行優化的機器學習技術,透過調整模型權重,使其在特定應用場景下的輸出結果更準確、符合預期。Fine-tuning 保留基礎模型的能力,同時針對特定領域強化應答準確性,相比從零開始訓練一個新模型,大幅節省了開發所需的成本與時間。
為什麼需要 Fine-tuning?
現成通用的 AI 大語言模型雖然功能強大,但在特定領域如法律、醫療、金融、科技製造等產業中,可能無法精確理解專業術語或規則,甚至可能產生錯誤資訊,無法直接應對每個組織或企業的獨特需求。而透過 Fine-tuning,可以讓模型深度學習特定領域的知識、更準確地理解特定語境,進而提升整體專業性與應用價值,成為企業AI部署的重要步驟。
Fine-tuning 運作流程

Fine-tuning 的作業流程通常包括以下幾個步驟:

  1. 選擇預訓練(pre-train)模型

    根據企業組織的需求,選擇合適的 AI 大語言模型,如OpenAI GPT系列、Meta Llama系列、 國科會TAIDE模型、聯發科Breeze模型,或是eLAND GOAT模型等。

  2. 準備微調數據

    提供與任務或應用場景相關的資料作為模型的學習素材,如客服對話紀錄、法律文件、產品規格或研發文件、企業內部資料等,使模型能更準確地理解專業內容並優化回應品質。

  3. 調整模型參數

    透過微調數據對模型進行訓練,更新部分或全部數據資料的權重參數,使其更貼近企業應用場景的需求。

  4. 評估與優化

    藉由準確率(Accuracy)、召回率(Recall)、F1分數(F1 Score)等指標來衡量微調效果,並根據測試結果不斷進行調整與優化,確保模型輸出更符合使用者需求。

經過微調的AI模型,能夠更有效地應對高度定制化的需求,對於企業而言,無論在提升業務效率、改善客戶服務,或者優化內部決策過程中,都能發揮重要作用。

Fine-tuning 於企業中的應用

如前段所述,Fine-tuning 不僅是提升模型準確度的工具,更成為幫助企業提升營運效率、降低成本和創造競爭優勢的關鍵,以下進一步彙整 Fine-tuning 在企業中的三大應用價值:
  1. 增強企業專屬化服務
    透過 Fine-tuning,企業能夠調整 AI 模型的回應語氣、風格與內容,從而提供更具個性化的服務體驗。例如,在客服領域,企業可以根據不同客戶群體的特性、偏好或文化背景,調整模型的回應方式,進一步提升顧客滿意度;在科技製造業,許多特殊的產品規格、專業的用字及術語,都可以透過微調模型,讓研發人員在使用上更順暢。
  2. 提升專業知識掌握度
    Fine-tuning 可強化 AI 在特定領域的知識理解與應用能力,特別適用於法律、醫療、金融等高度專業的行業。例如,透過 Fine-tuning,使 AI 更熟悉特定的專利法條文與案例,不僅能幫助法律人員更快地檢索相關判例,還能協助草擬專業的法律文書,從而提高工作效率並確保法律建議的精準性。
  3. 提升業務流程的自動化與效率
    Fine-tuning 可根據企業的運營需求進行調整,使 AI 更精準地理解並執行特定任務,進而提升業務流程的自動化程度與運營效率,並降低人為錯誤。例如,在銷售自動化方面,一家電子商務公司可透過 Fine-tuning 優化 AI 銷售助理,使其根據顧客的購物歷史與個人偏好,自動生成量身定制的促銷訊息或產品推薦。如此一來,AI 不僅能更準確地預測顧客需求,還能主動推送適合的產品與折扣資訊,提高銷售轉化率,同時減輕銷售人員的工作負擔。

Fine-tuning 的優勢與挑戰

綜合來說,Fine-tuning 的核心價值在於 將 AI 從「一般通用」變成「企業專屬」,讓企業能更有效地利用 AI 工具滿足需求。運用微調技術,企業可以大幅減少每次與 AI 互動所需的 Token 數量,從而降低運行成本。此外,企業可在內部環境中訓練 AI,既能確保敏感資料不外流,也能強化資料安全性,而經內部數據微調後的 AI ,能更快速生成精確回應,提升互動流暢度並減少錯誤資訊的風險。

而雖然 Fine-tuning 具有諸多好處,但是也具備一定的技術難度。一般而言,Fine-tuning 需克服的挑戰如下:

  1. 選擇合適的預訓練(pre-train)模型及微調方法

    在技術層面, Fine-tuning 微調可採用多種不同的方法,如何在保留模型原有能力(capability)的同時,又獲得最好的學習效果,需仰賴有經驗的專家給予指導,並進行系統化的實驗。

  2. 準備適當的訓練資料集

    微調數據的數量、品質以及形式都將直接影響最終成果。大量但品質低劣或格式不佳的數據,未必能得到好的微調結果;而具備高品質、形式佳的數據,即便數量有限,仍可透過數據合成(data synthesis)或強化等技術的輔助,也可能有利於微調的成功。

  3. 確保適當的運算資源

    在 Fine-tuning 微調模型時,通常需要比模型推論(inference)更多的資源,如算力和記憶體等,而有時不一定一次就能微調成功,可能需要多回合地嘗試。因此,如何有效地運用算力及資源、提高微調成功率,也是必須克服的挑戰之一。

綜前所述, Fine-tuning 是企業打造專屬 AI 模型的重要技術,能協助企業更靈活應對市場變化、拓展創新應用,無論是提升客戶服務、優化內部流程,或創造新的商業價值,都將成為數位轉型與業務成長的關鍵。若企業希望充分發揮 Fine-tuning 的效益,則可選擇與具備經驗的廠商合作,以降低試錯成本與時間,提高成功率並加速導入。

AI 在金融業的價值:把資訊轉化為即時決策力

協助金控企業整合內外部數據,以權限控管提升知識管理效能

以大型金控企業為例,其組織規模龐大、檔案文件眾多且分散,故希望能將專業知識與大型語言模型整合,提供各部門自建 AI 大腦與客製化 AI 助理,實現全面的教育訓練與技術轉移計劃,並有效提升業務效率,且需根據不同部門進行權限控管設定。

而在大型金控企業的服務流程中, AI Search for KM 首先會從使用者帳號、其輸入的問題進行權限判斷,確保符合企業機敏資料的資安規範。另 AI Search for KM 不僅支持使用者上傳內部檔案作為分析標的,還能向外部網站、外部指定資料庫、現有搜尋引擎資料結果進行資料查詢請求,並優化檔案內容之解析效果,以幫助問答結果更加精準。如與《OpView 社群口碑資料庫》做串接,便能提供企業即時掌握市場輿情資料等外部動態,透過多元數據整合,打造全面的知識數據中心,讓企業能夠應對快速變動的產業環境,實現更智能化的知識搜尋與決策支持服務。

問答情境展示

搜尋內部知識 - 智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

下圖中如證券部門與期貨部門人員同樣詢問「當沖交易的限制」,系統便能自動判別其所屬部門,並提供「證券交易的限制」與「期貨當沖交易的限制」兩種版本之完整回覆:智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

串接外部資料 - 結合即時市場數據與輿情分析,提供多元化預測視角

而若是提問上市櫃企業「近期的議題重點及未來一周股價預測」,AI Search for KM 也能調用即時市場數據,並給出完整、多元的回應與預測看法,快速整理社群媒體近期的熱議焦點供使用者做參考:

 

智能辨識使用者所屬部門,提供精準且差異化的專屬回覆

進階應用 - 檢查與生成文件

結合生成式 AI 與 NLP 技術,智慧助理系統支援法規知識檢索、跨文件整合與一致性檢查,協助承銷人員快速消化龐雜資料並生成報告,提升效率與正確性,全面優化金融作業流程。

2025意藍 AI 數據年會 熱烈報名中!

即將在9/16(二) 台大集思會議中心舉行,匯聚400+產業菁英,
帶您一次掌握企業決策、產業應用、落地案例,
歡迎前往報名!

AI Search 電子報 | vol.04 資訊零散難管理?這4步驟幫你解,知識活化立即上線

AI Search 電子報 | vol.04 資訊零散難管理?這4步驟幫你解,知識活化立即上線

AI Search 電子報|AI 企業應用焦點

AI Search 電子報:洞悉台灣企業 AI 落地真實力

在 AI 浪潮席捲全球的今日,資訊焦慮已成為企業共同的課題。國外最新的模型、最炫的應用,雖令人目不暇給,卻往往與台灣企業的日常營運有著一段不小的距離。我們真正需要的,不只是追逐國際 AI 快訊,而是在地實踐的洞見與智慧。

意藍資訊身為台灣第一家 AI 智能數據上櫃公司,站在產業第一線,深刻理解台灣企業導入 AI 時所面臨的真實挑戰,包括了各種產業應用,例如金融、製造、零售、服務、連鎖、乃至政府及公部門等,提出如何導入生成式 AI,真正滿足企業需求、解決企業問題、符合企業效益的解方。

這份《AI Search 電子報》因此而生。意藍資訊將以 AI 及數據的專業視角,分享生成式 AI 在台灣各行各業的導入故事,透過務實的策略與案例,旨在協助您找到最適合自身企業的 AI 路徑。誠摯邀請您,與意藍資訊一同探索 AI 在台灣企業的各種應用及可能。

意藍資訊總經理 楊立偉 博士

翻轉資訊散落困境,4 步驟推動企業知識活化

隨著市場上的競爭日益激烈,如何有效推動知識管理成為了企業提升競爭力的關鍵;然而,許多企業在推動知識管理的初期,常常不知如何起步。知識管理不僅涉及知識的識別、儲存,更包括如何系統性地分享和應用這些知識,本文將介紹知識管理的基本概念,並說明可以從哪些面向著手建立和推動知識管理體系,最後深入探討生成式AI如何為知識管理領域帶來革新。

知識管理概念介紹

知識管理是什麼?

知識管理 (Knowledge Management, KM) 是指在企業或組織內部,對知識進行系統性的蒐集、保存、組織、分享和應用的過程,將分散在個人、團隊和系統中的知識轉化為整個組織可以利用的資產,進而提升組織的營運能量和整體競爭力。

知識管理如何提升企業競爭力?
知識管理可以透過以下多種面向提高企業競爭力:
  1. 改善營運效率:藉由知識管理,員工可以分享和存取企業或組織內部的資訊,在遇到問題時,也能通過知識庫或企業內部的知識分享平台迅速找到解決方案,避免重新投入時間和資源去解決過去發生過的問題,進而提升生產力與整體營運效率。
  2. 加速創新能力:企業可以透過知識管理,從現有技術和過往經驗中持續學習,並不斷進行優化,加速產品的創新及發展進程。
  3. 提高決策品質:知識管理促進了既有知識與資源的整合,使企業能夠記錄和分析過去的決策及其結果,藉此更準確地預測市場風險和潛在挑戰,加速決策過程並提升決策精準度。
  4. 經驗傳承:知識管理有助於經驗的傳承,除了避免人員重複學習和研究,也可以減少因員工離職或崗位變動造成的知識流失。

企業推動知識管理4步驟​

從零開始推動知識管理是一個需要循序漸進的系統化過程,涉及多個層面的協同與整合,而企業可以從以下四個步驟著手:

  1. 知識需求分析:分析企業內部的知識需求,確定哪些知識對企業的運營和發展至關重要,並識別現有知識資源和潛在的知識缺口;同時盤點目前的知識管理狀況,包括知識儲存方式、知識共享文化以及技術基礎設施等,找出需要改進的領域。
  2. 整合發展目標並制定策略:根據需求分析的結果,制定詳細的知識管理計劃,包括如何蒐集、存儲、分享和應用知識,並設定具體的里程碑,將知識管理融入企業發展策略中。
  3. 營造知識分享文化:持續宣導知識分享對於個人和企業長期發展的重要性,除了高層人員以身作則外,也通過培訓、激勵措施或知識管理競賽等,鼓勵員工主動分享經驗與知識,抑或讓知識物件的經營成為員工績效評估的加分專案。
  4. 導入適當技術:結合生成式AI人工智慧技術,對企業內外部知識進行系統性盤點,建構一站式資訊平台,實現 AI 輔助的知識檢索與問答,提供知識的分享、學習、再運用與創新,包括知識地圖、專家黃頁、知識社群、結構化在職訓練及問答等。
而若是原先就有既有知識庫的企業,則可以透過以下方式優化並提升知識運用效率:
  1. 評估現有知識庫:全面審視企業內部的知識庫,包括其結構、格式、內容及涵蓋範圍,識別關鍵知識,以及和潛在需要補強的地方。
  2. 導入新一代生成式AI知識管理系統:對現有知識庫與生成式AI知識管理系統進行整合,並利用AI的自然語言處理能力,提升知識檢索的準確性以及效率。
  3. 即時更新與動態適應:建立即時更新機制,確保知識庫中的內容能即時、動態調整,以快速反映業務需求和市場變化。
  4. 加強處理非結構化資料:透過語意分析技術,將非結構化資料轉換為結構化資料,並結合生成式AI技術,利用其自然語言理解和生成能力,自動化處理大量非結構化資訊,將其轉化為可檢索和使用的知識,提高知識庫的全面性和實用性。

生成式 AI 對知識管理的影響

隨著生成式 AI 技術的發展,其為知識管理領域帶來了重要的革新。在技術層面上,它讓知識的檢索變得更為彈性;在應用層面上,則讓使用者能更有效且快速地吸收相關知識。

技術面的影響:搜尋檢索更彈性,更容易學習上手

傳統的知識檢索方式主要仰賴關鍵字檢索與預設的分類樹結構,而這樣的檢索方式存在兩個痛點:

  1. 對於使用者來說,較難將問題轉換成複雜的關鍵字組合進行提問,也因此使用門檻較高。
  2. 關鍵字的檢索多是以「關鍵字組合的出現次數」作為搜尋依據,無法反映出問題與參考文本間的語意關係,造成檢索結果可能與用戶期望有所偏差。

將生成式 AI 導入知識管理領域後,應用其「自然語言對話」的特性,可以有效解決上述兩個痛點:

  1. 生成式 AI 允許使用者以自然語句直接輸入問題進行提問,用戶無須把問題轉換成複雜的關鍵字組合,降低了使用門檻。
  2. 生成式 AI 能夠更好地理解問題的語意,使搜尋結果能夠更準確地反映問題的內容,並找到與問題真正相關的參考文本。此外,生成式 AI 可以生成淺顯易懂的答案,直接解決使用者的問題。 
導入及使用上的影響:更有效的知識吸收與消化

傳統的知識管理,在導入及使用上往往停留在「檔案」層級,使用者須透過關鍵字檢索找到最可能的檔案後,自行閱讀數十甚至上百頁的內容,從中找出與問題相關的資訊,再進一步消化以解答問題;而這樣的架構將使得用戶無法「快速且有效」地吸收、消化知識。

引入生成式 AI 技術後,這一問題則能得到顯著改善。生成式 AI 將知識管理提升到「答案」層級,利用 AI 的語意理解及自然語言問答能力,讓使用者可以直接獲取系統所參考的資料庫中相關檔案的段落,並生成白話回答,協助使用者高效達成知識消化及吸收的目標。

企業導入 AI Search for KM 之優勢

意藍的 AI Search for KM 即是整合生成式 AI、高速搜尋引擎與 NLP 技術的新一代 GenAI 知識管理工作平台,其所具備的功能特色如下:

  1. 支援多種檔案格式:支援各種常見的檔案格式,包含常用的 Office、PDF、文字檔等等,滿足企業需求。
  2. 權限控管機制:確保使用者僅能查詢到自己有權限查看的檔案與文件,避免資料洩露,滿足企業管控機敏資訊、劃分部門權限等需求。
  3. 全文檢索:系統不僅能夠檢索檔案的標題和內文,也能查詢作者及其他相關資訊,提供廣泛且彈性的資料檢索範圍,提升使用者找到所需資訊的效率。
  4. 支援對話問答:支援使用者以對話問答方式與系統互動,並會根據問題和參考資料提供口語化的回答,幫助使用者輕鬆理解和應用所得知識。
  5. 支援地端或雲端服務:企業可以根據自身需求選擇最合適的部署方式,導入雲端或是地端服務,並可根據不同使用情境和文件資料需求切換不同的大型語言模型。

而對於企業而言,導入 AI Search for KM 具有以下優勢:

  1. 降低人力成本:透過自動化搜尋和回答的功能,有效減少員工手動處理知識資訊的需求,簡化知識搜尋與管理流程,節省人力成本。
  2. 提升作業效率:因支援多種格式的檔案管理,使得資訊不再分散,方便員工找到所需資料,並提供即時準確的回答,縮短員工資訊獲取時間。
  3. 增強知識內化與應用:支援自然語言互動方式,讓員工能以白話文提問,快速獲得所需知識,從而提升消化和應用知識的效率與準確度。
  4. 強化資料安全與隱私:具有權限控管機制,確保只有具備相應權限的人員才能查找和檢視資料,且系統支援地端服務,能有效防範內外資料洩露風險。
  5. 促進知識共享與協作:可整合不同來源的資料,讓各部門的員工都能輕鬆提問和搜尋知識,促進團隊合作交流。

推動知識管理對企業的長期發展至關重要,不僅是提升競爭力的核心,更是確保企業持續創新和應對市場變化的基礎。隨著生成式 AI 技術的引入,知識管理的應用層次也得到了極大提升,透過導入合適的知識管理系統,企業便能更靈活地管理和運用知識資源,從而在競爭激烈的市場中保持領先地位。

從碎片資料到即時答覆,AI 助力政府循證治理升級

隨著社會對於數據的信賴與依賴度愈發提升,近年來「循證治理」也開始備受重視,固本案旨在協助單位推廣運用資料科學於政府政策決策上,運用前瞻性的觀測分析工具,有效利用過去累積及研究團隊蒐集的大量資料,如相關座談、論壇等,進行社會趨勢的深入分析,精準辨識影響國家發展的關鍵社會課題。 而為了提升政府對公眾問題的回應能力與透明度,意藍透過生成式 AI 人工智慧與檢索增強生成技術(RAG),改善資料搜尋與處理流程,進一步建立「社會政策知識檢索問答平台」,供部會首長及政策制定者能在立法院質詢等公共場合中,即時並準確地回應各方提問,從而提供基於循證的決策支持,優化政策制定與執行過程。

社會政策知識檢索問答平台服務流程說明

  1. 資料發言者與屬性辨識

    根據過往資料,準確區分不同發言者在各議程中的發言內容,接著自動識別並標記文本中的屬性詞,如提及到的重點人物、組織名稱及地理位置資訊等,辨識出各發言者的關注焦點與觀點的異同,從而對其關注面向進行初步的探勘與分析。

  2. AI 摘要與自動分群

    藉由大型語言模型可自動解讀並提取文本的核心內容,再透過語意分群演算法,對這些經過摘要整理的文本進行分析。

  3. 檢索增強生成參數設定

    結合搜尋引擎、向量資料庫與大型語言模型,彙整並突顯資料中的重點,亦可驗證特定解釋是否正確,並提供更深入的洞察,及議題之關鍵觀點。

技術特色與優勢

在此專案中,意藍首先透過命名實體識別 (NER) 技術精準標記關鍵資訊,辨識發言者重點與關注焦點,再由大型語言模型 (LLM) 自動提取文本核心內容,並利用語意分群技術自動分類不同觀點,提升分析準確性。接著,藉由 RAG 技術結合搜尋引擎與向量資料庫,進行深入資料檢索與生成,讓 AI Search for KM 所提供的知識平台能夠整合施政計畫及歷史文本,透過即時資料處理,為部會首長在受立院質詢時提供即時且準確的回答,確保政策回應具備充分理據,支持循證治理,提升政策反應效率與決策品質。

問答情境展示

整合跨來源資料,評估公共議題與政策對社會之影響

當使用者提問「特定族群於公共議題/政策中會受到的影響」,系統便能根據相關參考資料自動彙整摘要,進行跨來源資料整合,同時確保決策者可追溯具體資料點,透過 AI 資料科學技術進行循證決策,提升公共決策者政策回應效率。

整合跨來源資料,評估公共議題與政策對社會之影響

發言者發言重點摘要,快速掌握核心論點

而 AI Search for KM 也能自動分析目標對象於各式會議或政策發言的重點,並生成總結,協助決策者快速掌握討論的核心觀點,實質提升政策討論的效率,支持政策的數據化決策過程。

發言者發言重點摘要,快速掌握核心論點

調取最新數據,分析政策實施成效

調取最新數據,分析政策實施成效

最後,我們也可以透過 AI 分析來幫助政府評估政策成效,即時分析、更新最新的政策執行情況,讓決策者能夠迅速反應並做出調整。如上圖中詢問「非營利幼兒園設立家數是否提升」,系統便能根據參考文章回覆目前累計的公共化幼兒園增設數量,亦提供如幼兒入園率、後續可如何推動,及現階段政策實施所遇到的困難等。

藉由數據化的分析結果不僅提供給決策者,也可向公眾展示政策執行進度與成效,提升政府在社會政策治理上的透明度和公信力。

2025台灣人工智慧年會 重磅登場!

即將在9/9(二)-9/10(三) 中研院舉行
匯聚1,500+產官學研菁英,邀集 Google DeepMind、華碩等頂尖講者,
共探 Agentic AI、機器人&無人機、運動科學、AI 政策與安全等前沿議題。
歡迎前往報名!

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>不只是懂指令的AI!探索AI Agent 如何改寫決策流程與工作模式

精華文章不只是懂指令的AI!探索AI Agent 如何改寫決策流程與工作模式

不只是懂指令的AI!
探索AI Agent 如何改寫決策流程與工作模式

前2年,企業導入AI主要用來回應問題或加快資訊處理速度。但自今年起,企業更期待AI能主動思考、完成多步驟任務,這也讓「AI Agent(AI代理)」成為新一代AI應用的核心焦點。不同於先前只能被動執行指令的AI,AI Agent具備自主感知、決策與行動能力,能像一位可靠的虛擬助理,協助你完成多步驟任務、主動分析資訊,甚至隨著使用次數越多越聰明。本文將帶你全面認識AI Agent的概念、運作流程與實際應用價值。

什麼是AI Agent(AI代理)?

AI Agent 定義 / 基本概念
AI Agent,是一種具備自主決策與行動能力的人工智慧系統。與傳統AI需要明確指令才能運作不同,AI Agent不僅能理解任務本身,更能推敲背後的目標、從環境中感知資訊,並根據累積的經驗做出最佳決策;簡單來說,它不只是「能做」,而是「知道為何做、該怎麼做、接下來該做什麼」。AI Agent通常具備以下四大能力:
  1. 目標導向(Goal-oriented):可以根據使用者指定的目標,自行規劃任務執行流程。
  2. 感知能力(Perception):能自外部環境或使用者互動中,擷取關鍵資訊。
  3. 記憶與學習(Memory & Learning):擁有記憶機制,可學習並累積過去的經驗,進一步優化未來表現。
  4. 自主行動(Autonomous Action):能主動採取行動,如呼叫API、使用工具、完成多步任務等。
AI Agent 與一般生成式AI的差異
一般的生成式AI多半仰賴輸入指令來完成特定任務,例如當使用者輸入問題時,AI便根據資料庫回傳答案。而AI Agent則更進一步強調「任務導向」與「自主規劃」,它不僅聽得懂指令,更能主動思考「要怎麼完成這項任務最有效率」。 舉例來說,如果你希望AI幫你撰寫一份市場報告,一般的 AI應用能基於所學習過的知識來回應問題;而AI Agent則會主動搜尋多個資料來源、整合內容、過濾重複資訊,甚至回顧以往你提供的文字風格偏好,自動調整格式與語氣,自主性和靈活性大幅提升,真正成為一位可靠的虛擬助理

AI Agent工作流程解析

隨著AI Agent技術成熟,其應用場景已從簡單的聊天對話,逐漸延伸到多步驟、跨系統的企業任務處理。以下列舉5個高潛力應用場域:

  1. 客戶服務:不只是回覆問答,AI Agent更能記住過往對話脈絡、主動追蹤處理進度,甚至呼叫內部CRM系統查詢資訊。
  2. 推薦系統:透過AI Agent,電商零售平台可根據使用者站內行為與搜尋內容,主動推薦合適商品,並整合庫存、優惠與物流資訊,提升購物體驗與下單意願。
  3. 法務工作:AI Agent能支援提供案件摘要、撰寫法律文件草案、查找相關判例等任務,提升法務工作效率與準確性。
  4. 金融投資:即時分析市場資訊、監控資產波動,並根據個人投資偏好,提出個人化的理財建議,或執行條件式自動交易。
  5. 輿情分析與策略規劃:AI Agent 能接收開放式提問,自動檢索最新網路聲量趨勢、熱門關鍵詞等資料,生成結論或建議,協助企業快速掌握輿情風向與行銷重點。

綜上所述,AI Agent 的出現,象徵著企業AI應用邁入新階段,從被動使用工具,到擁有一位能主動協助任務的智慧虛擬助理。在生成式 AI 已成標配的當下,具備任務理解與自主執行能力的 AI Agent,正成為企業深化數位轉型的關鍵,透過減少重複性工作、加快決策流程、優化資源配置,AI Agent 能有效提升整體營運效能,為企業打造更高效、智慧的營運模式。

想進一步了解意藍更多AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

Copyright eLAND Information Co., Ltd.