<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>知識管理在政府單位的應用價值與實踐挑戰

精華文章知識管理在政府單位的應用價值與實踐挑戰

知識管理在政府單位的應用價值與實踐挑戰

隨著數位化時代的加速發展,政府組織與各行各業都同樣面臨著數位轉型的重要轉折點;對於公部門而言,AI的導入與應用不僅能夠提升作業效率,更能有效加強公共服務品質、協助應對日益複雜的科技挑戰。而隨著政府內部資料量急劇增加,其對於升級知識管理應用的需求也日益增強,如何引入合適的管理工具、創造知識的最大價值,已成為提升行政效能、實現循證治理智慧化的核心課題。

本期 AI 知識庫亮點

知識管理對政府單位的重要性
  1. 為什麼政府單位需要知識管理?
  2. 政府單位的知識管理需求
政府單位知識管理升級解方 ── 新一代生成式AI知識管理系統
導入生成式AI知識管理系統的長遠影響
常見問題 FAQ

知識管理對政府單位的重要性

為什麼政府單位需要知識管理?
政府單位肩負服務民眾和執行公共政策的重責,其運作效率將直接關係到社會的發展與民眾福祉,而知識管理可透過以下多個面向提升政府效能:
  1. 提升行政效率
    透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。
  2. 改善決策品質
    面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。
  3. 增強政府公信力
    透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。
政府單位的知識管理需求
相較於一般企業,政府單位在知識管理方面具備以下獨特需求──
  1. 提升資料透明度的同時,兼顧公眾隱私與敏感資料保護
    政府部門需要在推動資訊公開與透明的同時,妥善保護公民的隱私及敏感資料,防止未經授權的資料洩漏或濫用,因此用以輔助之知識管理工具不僅需能有效整合資訊,還需具備完善的存取控制機制,以確保資料安全。
  2. 長時間保存文件和數據,滿足稽核和法律合規需求
    政府部門的文件和數據保存期通常較企業更長,因涉及的資料需滿足各種法律、稽核及合規要求,如政策文件、預算報告或公共安全數據等資料,需長期保存並於必要時進行查閱、追溯。
  3. 業務範疇廣泛,資料量龐大且多樣性高
    政府內部通常由多個部門組成,且各單位的業務範疇不同,涵蓋政策規劃、業務執行、管理督導、勾稽核實等多元領域;各部門間的數據格式、常用檔案形式與管理流程可能存在差異,多樣的需求使得統一管理的難度也有所提升。

政府單位知識管理升級解方 ── 新一代生成式AI知識管理系統

針對以上政府單位對於知識管理的需求,意藍的新一代生成式AI知識管理系統AI Search for KM 便是理想的解方,其亮點特色如下:
  1. 支援多種常用檔案格式
    包含Office、PDF 、CSV等等,不需額外花費太多心力進行轉檔處理,可應對政府內部多樣化數據格式的需求,有效解決跨部門整合困難。
  2. 具備檔案權限劃分機制
    確保只有授權人員能夠存取、檢視特定檔案,降低機密資料洩露風險,滿足政府單位對敏感資料保護的嚴苛要求,並為跨部門合作提供安全的知識共享環境。
  3. 提供彈性的部署方式
    政府單位可根據自身需求,選擇雲端平台服務或導入地端服務,也可以針對不同的任務,自由切換OpenAI GPT系列、Meta Llama系列、 國科會TAIDE模型、或者意藍經由大量本地語料調校而成的eLAND GOAT等多種大語言模型,滿足政府對多樣化應用場景的處理需求,同時提升系統效能,符合成本效益。
  4. 支援語意全文檢索
    無需進行額外的資訊建立、分類或關鍵字標記,系統便能對檔案進行全範圍檢索,包含標題、內文、作者、建檔時間等資訊皆在搜尋範圍內,解決了龐大資料量下的搜尋困難。
  5. 支援易於使用的對話問答
    使用者可以自然語言對文件知識點提問,系統會根據問題與相關參考資料,回傳彙整後的口語化回覆,讓非技術人員與高層主管能以直覺方式獲取知識,提升整體操作便利性與工作效率。

導入生成式AI知識管理系統的長遠影響

生成式AI知識管理系統的導入,不僅能有效為政府單位解決跨部門協作與資料整合的挑戰、提升行政效率與決策品質,更能助力其持續優化知識的流通與應用模式,逐步實踐智能化治理與決策,為數位政府與智慧城市的長遠發展奠定堅實基礎。

常見問題 FAQ

Q1:政府單位為何需要升級知識管理?對提升行政效能有什麼幫助?

A:升級知識管理能有效縮短資訊傳遞時間,並強化政策制定的「循證治理」能力。

政府肩負公共政策執行重責,透過知識整合與共享,能協助決策者在緊急事件發生時掌握即時且全面的資訊。此外,完善的知識管理能讓各部門回應民眾需求時更具一致性與即時性,進一步增強政府公信力。

Q2:公部門資料龐大且範疇廣泛,新一代 KM 系統如何解決整合困難?

A:系統支援多種檔案格式(如 Office、PDF、CSV)並提供全文檢索功能。

各部會常見的業務文件、預算報告或稽核數據,不需額外轉檔即可納入管理。透過 AI 的語意檢索技術,系統能自動對檔案標題、內文及作者資訊進行全範圍搜尋,解決了龐大資料量下「找得到、對得上」的搜尋痛點。

Q3:政府文件保存期長且涉及法律合規,AI 系統能滿足這些需求嗎?

A:可以,系統支援長時間的數據保存與追溯,符合稽核與法規合規要求。

公部門的文件(如公共安全數據、政策草案)涉及長期查閱需求。意藍的解決方案能穩定存儲巨量資料,並透過智能檢索讓數年前的決策脈絡能被快速喚醒與複用,確保行政過程具備完整的可解釋性。

Q4:導入生成式 AI 知識管理時,如何確保公民隱私與敏感資料不外洩?

A:透過「完善的檔案權限劃分」與「地端部署」實現資安保護。

系統具備嚴苛的存取控制機制,確保僅有獲得授權的人員能檢視特定機密檔案。此外,政府可選擇「地端服務」部署,讓所有運算與資料皆留存在內部環境中,防止敏感資料流向公有雲模型,符合國家資安標準。

Q5:非技術人員或高層主管也能輕鬆操作 AI 知識管理系統嗎?

A:可以,系統支援「自然語言對話問答」,操作體驗極為直覺。

使用者無需學習複雜的搜尋語法,只要以白話文提問(如:去年度減碳政策的執行進度?),系統便會根據內部文件彙整出條列式的口語回覆。這不僅減輕基層員工負擔,也讓高層能迅速獲取知識摘要,提升決策效率。

Q6:可以針對不同任務選用不同的 AI 大語言模型嗎?

A:可以,意藍提供彈性的模型切換機制,支援 OpenAI、TAIDE 或在地 eLAND GOAT 模型。

政府可根據任務的機敏程度與語境需求,自由選擇如國科會 TAIDE(針對繁中優化)或意藍自研的 eLAND GOAT。這種彈性不僅能滿足多樣化的應用場景,更能兼顧成本效益與系統效能。

Q7:AI Search for KM 如何解決「跨部會資訊孤島」的問題?

A:透過統一的知識管理平台,打破各部門間的資料格式與溝通門檻。

政府內部各單位業務分工細密,資料常分散於各處。AI Search for KM 能作為跨部會的知識共享中心,在確保安全權限的前提下,讓不同領域的公務人員能互通有無,活化先前累積的大量知識資產,促進跨部門協作。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/11</span>意藍資訊獲邀於 2024 Meet Taipei+ 創新未來館趨勢短講 分享最新 AI 轉型應用!

2024/11意藍資訊獲邀於 2024 Meet Taipei+ 創新未來館趨勢短講 分享最新 AI 轉型應用!

在 AI 浪潮下,大部分企業迫切地尋求數位化、智能化轉型,可以說是「百工百業用 AI」,各產業皆面臨全新的機遇以及挑戰。而企業的核心競爭力–知識流,其存儲、搜索與活用更成為資訊轉型的關鍵一環,為達成企業永續,知識管理是為不可或缺的一部分。

在 2024 Meet Taipei+ 創新未來館趨勢短講活動上,意藍資訊產品經理吳于艷,分享了企業知識管理的重要性及其實際應用案例,吸引眾多產業先進參與。我們展示了意藍的生成式 AI 知識管理系統「AI Search for KM」,該系統結合生成式 AI、搜尋引擎與 NLP 技術,專為企業設計,具備企業權限控管、資料安全與高效能等特性,能夠有效提升作業效率達 40% 以上。

同時我們深入介紹了 AI Search for KM 在國家災害防救單位、大型金控企業及建廠設備業者等領域的實際導入案例,並展示了系統如何幫助這些企業快速搜尋並管理內外部資料,進一步提升決策效率。例如,透過「知識問答」功能,組織人員僅需輸入簡單的口語化問題,即可獲得精準且即時的知識內容,減少繁瑣的搜尋過程。同時,靈活的權限設定與資料來源整合功能,也讓不同部門及層級的使用者能快速找到專屬資訊,極大提高了跨部門協作效率。

展望未來,意藍資訊將持續深耕 AI 技術的研究與應用,致力於為企業提供全方位的數位解決方案。我們期待透過這些創新工具,幫助更多企業實現數位化、智能化轉型,加速產業升級,並為各行各業帶來更智慧、更高效的工作模式。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>如何利用 AI 掌握即時災情?看災防中心如何透過 AI Search for KM 落實循證決策

精華文章如何利用 AI 掌握即時災情?看災防中心如何透過 AI Search for KM 落實循證決策

如何利用 AI 掌握即時災情?
看災防中心如何透過 AI Search for KM 落實循證決策

近年來, AI 技術的持續創新突破,推動了政府和企業內的數位變革,如何導入並善用AI以提升服務的效率和品質,成為各單位組織的重要課題。
國家災害防救科技中心(National Science & Technology Center for Disaster Reduction,以下簡稱災防中心或NCDR)為政府於2003年設立的專業機構,多年來專注於災害風險管理防救科技的研究;為了能在災害發生時更即時地掌握災情、強化危機事件處理能力,災防中心與意藍資訊合作,導入意藍「AI Search For KM」系統,運用生成式AI與自然語言模型建構「災害防救知識問答平台」,大幅提升災情資訊處理效率,並以數據支持決策判斷,為智慧城市發展奠定穩固基礎。

災防中心背景與需求介紹

國家災害防救科技中心成立於2003年,主要任務在於提升台灣在面對各種自然災害時的應變能力與減災效果、確保民眾生命財產安全。面對台灣頻繁發生的地震、颱風、土石流等天然災害,災防中心不僅需在災前做好準備,也必須在災害發生後迅速掌握最新狀況,整合、分析各類災情資訊以協助政府及相關單位作出精確的應對決策,並提供必要的預警或通報。

隨著大量災情資訊不斷累積,災防中心在知識管理升級方面的需求日益增強;另一方面,數位化時代下社群媒體和網路社群亦成為災情資訊快速傳播的主要來源,這些公開管道中的資訊量龐大且更新頻繁,如何高效蒐集、結構化、分析並運用這些來自各地的災情回饋,也是災防中心需面對的重要課題之一。

以AI Search for KM 建構「災害防救知識問答平台」

為了更快速、準確地掌握災情資訊以提升災害應變效率,災防中心選擇與意藍資訊合作,導入意藍新一代生成式AI知識管理系統「AI Search for KM」,運用人工智慧與自然語言模型技術,並結合社群輿情資料和專屬的歷史數據庫,打造「災害防救知識問答平台」,解決資訊來源分散、數據處理繁複等痛點,協助單位提升資訊處理效率,以利更好地應對和管理災害風險。 意藍協助災防中心建構災害防救知識問答平台的流程如下:
  1. 資料蒐整與預處理:蒐集歷年來既有的災害事件情資研判報告、即時觀測數據(如雨量、河川水位等),以及各大公開媒體、Facebook粉絲團、Dcard、巴哈姆特、Mobile01及Ptt等公開討論區的地區版等資料,經過清整、結構化與預處理,將結構化與非結構化資料均轉換為模型可理解的格式。
  2. 語意分析與標記:透過語意分析技術,讓AI自動判別每一篇災情文章內容中提及的地理資訊、災害事件以及災情程度等,將這些重要詞彙辨識出來並自動標記,以利後續的索引和檢索。
  3. 大語言模型選擇:評估各個大語言模型在災害防救領域問答的真實性、回覆速度、正確性、可讀性、理解上下文與統整能力等效果,選擇最適用的自然語言模型。
  4. 建立資料向量索引、設定參數:提高檢索與問答時的效率及準確性,確保AI模型對災害知識有精準的搜尋能力與答覆效果。

透過AI Search for KM 所提供的知識平台,災防中心便能夠針對歷年災害事件、抑或即時災情進行問答,系統會逐步拆解使用者所輸入的問題,再透過大語言模型(Large Language Model, LLM)及檢索增強生成技術(Retrieval-Augmented Generation, RAG)生成完整回覆。

以颱風相關的問題為例,使用者可對系統以口語文字方式提問,如「哪個地方災情最嚴重」、「哪些鄉鎮的河川水位超過一級警戒」等等,AI Search for KM便會即時調用內部知識庫及外部即時數據,找出與使用者提問最相關的多個參考內容,從中綜合歸納出答覆。AI Search for KM具備簡便、容易使用的介面,能快速統整內部及外部、文字及數值的各類數據,在分秒必爭的防災與救災時刻,提升作業效率。

▲ 問答情境1 – 分析災情嚴重區域

▲ 問答情境2 – 調用即時數據,掌握全面性災情

透過與意藍合作導入AI Search for KM系統,災防中心能夠更高效地整合歷史與即時災害數據,在災害發生前後做出精確的災情管理判斷,及時釐清災情狀況並調度人力與資源,落實循證決策、全面提升災害應變能力;未來意藍也將持續與災防中心攜手,逐步實踐智慧城市願景。

常見問題 FAQ

Q1:災害防救科技中心為何需要導入 AI 知識管理系統?

A:為了在分秒必爭的災害發生時,能快速整合、結構化並分析海量的分散情資。

災防中心面對頻繁的地震、颱風等災害,需處理包括歷年情資報告、即時觀測數據,以及來自社群媒體(FB, PTT, Dcard 等)的龐大非結構化資訊。導入 AI Search for KM 能自動清整並標記這些資料,大幅提升災情處理效率,支撐政府作出精確的應對決策。

Q2:AI Search for KM 如何協助災防單位蒐集散落在網路上的民眾災情回饋?

A:系統透過 ETL 數據處理技術,能自動爬取並結構化各大社群媒體與討論區的資訊。

面對 PTT 地區版、Dcard 或媒體新聞中破碎的災情訊息,系統會先進行清整與預處理,將文字轉換為模型可理解的格式。這解決了社群資訊量龐大且更新頻繁,人工難以即時過濾與彙整的難題。

Q3:當災害發生,AI 如何透過一篇社群文章自動判斷嚴重程度?

A:透過深度語意分析技術,AI 能自動辨識並標記文章中的地理資訊、事件類型與災情程度。

系統能自動識別文章中提及的「路段」、「水位」或「倒塌情況」,並進行關鍵標記。這有助於後續的索引與檢索,讓災防單位能第一時間篩選出最緊急的求援或損害回報,減少資訊遺漏。

Q4:災防中心的問答平台如何確保 AI 產出的回覆是真實且準確的?

A:結合了檢索增強生成(RAG)技術,要求 AI 必須根據內部知識庫與即時數據來回答。

系統不只依賴模型既有的知識,而是會調用災防中心專屬的歷史數據庫與即時觀測數據。當使用者提問時,AI 會找出多個參考段落進行綜合歸納,並註明出處,確保生成的內容具備高度的可驗證性,避免「AI 幻想」。

Q5:人員可以用多口語的方式對系統提問?系統聽得懂複雜的災情問題嗎?

A:使用者可以用非常直覺、口語化的自然語言進行提問。

例如直接詢問「哪個地方災情最嚴重?」或「哪些鄉鎮河川水位超過一級警戒?」。AI Search for KM 會逐步拆解問題中的核心關鍵字,自動串接雨量或水位等數值數據,並將複雜的數據轉化為白話的總結回覆,大幅降低系統操作難度。

Q6:面對多樣化的災害任務,如何選擇最適合的大語言模型 (LLM)?

A:意藍會針對模型的真實性、回覆速度與上下文統整能力進行全面評估。

在建構「災害防救知識問答平台」時,會針對災害防救領域的特殊語境,測試不同模型(如 OpenAI, Llama 或在地模型)的正確性與理解力,最終選擇能平衡「效能」與「成本」的最優模型,確保在救災關鍵時刻不卡頓。

Q7:導入 AI Search for KM 後,對於政府的「循證決策」有什麼具體貢獻?

A:系統能實現歷史經驗與即時數據的整合,提供科學化的判斷依據。

災防中心能快速比對歷年災害事件的應對經驗,並對比當下即時災情,協助決策者在釐清狀況後,精確地調度人力與資源。這不僅提升了災害應變能力,也落實了數據驅動的智慧城市治理願景。

想進一步了解「新一代生成式 AI 知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>生成式 AI 產業趨勢報告

下載報告生成式 AI 產業趨勢報告

生成式AI產業趨勢報告

從整體生成式AI產業應用趨勢,了解AI智能搜尋解決方案如何落地應用。

報告亮點

Part 1. 生成式 AI 話題趨勢探索
  • 1-1 生成式 AI 話題趨勢
  • 1-2 生成式 AI 的商業機會與挑戰
Part 2. 生成式 AI 的機會與應用場域
  • 2-1 生成式 AI 的應用趨勢
  • 2-2 核心技術—AI大語言模型
  • 2-3 關鍵應用—檢索增強生成(RAG)
Part 3. 以 AI Search 技術打造 AI 知識代理人
  • 3-1 本土生成式 AI 大語言模型—eLAND GOAT
  • 3-2 AI Search for KM 新一代生成式 AI 知識管理
  • 3-3 AI 驅動的多元未來:案例展示

生成式 AI 是基於深度學習,透過擁有大參數量的神經網絡來記憶學習大量的資料,並且在沒有明確標籤或指導之下,自行學習資料的分佈,來生成更多類似的資料。
而隨著近年來 AI 技術的持續創新與突破,百工百業都迎來了前所未有的數位變革。在這個數位轉型的關鍵時刻,AI 的導入與應用已成為各行各業提升競爭力和效率的重要策略。企業在應對市場挑戰與客戶需求時,數位化的布局顯得尤為重要。AI 技術不僅有助於提升運營效率,還能加強決策的準確性與靈活性,為企業的未來發展提供強大支撐。

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">下載報告</span>AI 智能搜尋解決方案:智慧政府應用趨勢報告

下載報告AI 智能搜尋解決方案:智慧政府應用趨勢報告

AI 智能搜尋解決方案:智慧政府應用趨勢報告

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點,而本報告將為各位說明生成式 AI 於智慧政府之應用趨勢,並以實際公部門單位導入案例展示智慧治理的落地應用。

報告亮點

Part 1. 生成式 AI 於智慧政府之應用趨勢
Part 2. 意藍 AI Search for KM 服務優勢
Part 3. 政府單位導入應用展示
  • 3-1 智慧城市災防應變數據分析
  • 3-2 智慧循證治理與質詢擬答
  • 3-3 智慧政府民意及民眾陳情資訊分析
Part 4. 意藍 AI Search for KM 服務導入方式
Part 5. 如何申請 AI Search for KM 服務體驗

隨著近年來 AI 技術的持續創新與突破,政府及企業都迎來前所未有的數位變革,無論是政府組織還是各行各業,皆面臨數位轉型的重要轉折點。AI 的導入與應用已勢無法擋,公部門在應對科技挑戰與回應民眾需求時,數位化佈局顯得尤為重要。 而智慧政府的核心目標,就是利用先進科技來提升公共服務的效率與品質,並使行政作業更具透明度與精準度

完整報告下載

歡迎填寫下列表單,我們將寄送完整簡報至您的電子信箱。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>大語言模型特色是什麼?企業導入的 3 大關鍵要素

精華文章大語言模型特色是什麼?企業導入的 3 大關鍵要素

大語言模型特色是什麼?
企業導入的 3 大關鍵要素

大語言模型(Large Language Model,LLM)是生成式AI領域中十分重要的一項技術與應用,它通過大規模文本數據的訓練,學習語言文字中的上下文結構和語意關係,並能生成自然流暢的回應,與使用者的提問做互動。本文將帶您了解大語言模型的原理與特點,探討企業如何有效運用大語言模型、使其在工作場域中發揮價值,並介紹意藍自行研發之大語言模型eLAND GOAT的具體應用。

認識大語言模型

什麼是大語言模型?
大語言模型(Large Language Model,LLM) 是一種基於大量資料訓練而成的深度學習模型,其特色在於模型參數量大、學習訓練資料廣泛,且在模型的訓練過程中,能夠識別及理解大量資料中每個詞句間的上下文關係,以及在語意空間中背後的意義,再根據使用者的提問或指令(Prompt),提供符合邏輯的自然語言回應。大語言模型的運作邏輯就好比文字接龍遊戲──根據使用者所輸入的詞句,模型會基於已學習、訓練過的資料與上下文,來評估哪些字詞最有可能出現在使用者的輸入之後,並生成相對應的文字回應。  
大語言模型的核心特點?
綜前所述,大型語言模型的核心特點包含以下幾點:
  1. 上下文理解:大型語言模型能更好地理解和處理文意,生成連貫、有邏輯的流暢回應。
  2. 多任務適用:大型語言模型能夠應付多種自然語言處理任務,無需單獨為每種任務設計特定模型,也因此能夠廣泛應用於多種不同場景。
  3. 大數據訓練:大型語言模型通常基於數千萬、甚至數億的文本資料進行訓練,龐大的數據量使得模型掌握了豐富的知識,從而能夠做出更準確的判斷與回覆。
不過也需要注意的是,大語言模型是根據過往數據資料訓練而成的,若遇到訓練資料中缺乏、無法回應的提問、或參考資料本身有所偏誤,可能就會出現AI杜撰、AI幻覺 (Hallucination)等現象,生成出錯誤甚至不存在的回應。

大語言模型的商業應用可能性

企業的大語言模型應用場域
而基於大語言模型具有的核心特點,可以被運用在以下幾個商業場域當中,來協助企業提升營運效率,輔助企業達成不同的目標:
  1. 市場行銷:大語言模型可以生成文案、分析市場趨勢以及顧客偏好,甚至優化廣告投放策略。它可以幫助撰寫社群媒體文章、電子郵件行銷內容,並根據市場數據預測消費者需求。
  2. 內部管理:大語言模型也可以成為內部知識管理的助力,幫助員工快速找到需要的資料,或者自動生成報告、會議記錄。此外,在客戶服務方面,也可以24小時即時回應客戶問題,減少人工客服負擔,並提供可驗證的參考內容出處。
  3. 輔助決策:透過分析企業數據,大語言模型還可以協助管理層做出更準確的市場預測,從而提升整體營運決策的效率和準確性。
 
企業如何善用大語言模型提升營運效率?
那企業究竟又該如何將大語言模型的優勢發揮出來?關鍵在於企業如何對模型下達準確的指令(Prompt)。對大語言模型提問時,語句及用詞要盡可能地具體、包含上下文訊息,才能讓大語言模型提供有效的回應,例如當想了解有關國內知名金融業者新光金控的相關資訊時,應避免簡化問句為「總資產?」,而是「請問新光金在今年第二季結束時的資產總額是多少?」,通過更精確的提問,大語言模型能提供更完整的回應。 除了應避免模糊不清的提問內容,提問的技巧也同樣重要,使用者應逐步引導模型進行推理,如欲詢問「新光金在大陸投資有賺錢嗎?」,可先調整提問為「請問新光金在大陸的投資項目為何?」,根據模型的回應,再進一步提問「投資損益為多少?」;藉由調整指令,讓模型能夠不斷學習並一次性回答多個相關問題,從而提升營運效率。  
企業導入大語言模型的關鍵要素​
隨著大語言模型的發展愈發成熟,企業導入大語言模型已是時下趨勢。而企業在導入大語言模型時則需考量多個關鍵要素:
  1. 數據隱私與資安控管:對於許多企業來說,使用大語言模型等相關服務時,除了須確保符合相關法律規範外,還需要對數據採取必要的保護,避免數據外洩或資安方面的風險。
  2. 模型與系統的相容性:在導入大語言模型時,需注意模型本身與企業現有系統的相容性,這涉及了技術、成本等多方面的考量,若企業缺乏相關經驗,便會使導入時的成本與難度增加。
  3. 企業基礎部署條件:不同企業在選擇大語言模型時,需根據自身具備的基礎條件,選擇雲端、地端或是混合部署。另外也須有足夠的計算資源與維運人力,確保模型運行並在必要時針對模型進行微調(fine-tune)。

意藍於大語言模型的應用

意藍深知大語言模型對企業營運的重要性與無限可能性,然而因目前主流的大語言模型多是使用英文語料進行訓練,中文語料的佔比相對較低,大部分資料又都是以簡體中文為主,與繁體、台灣所慣用的用字遣詞有一定差距。意藍挑選出台灣常用的語料,在兼顧適法性及合理使用的條件下,整理出AI的學習材料,開發出台灣本土的大語言模型eLAND GOAT,目標讓大語言模型可以更加在地化,並兼顧效能及成本之考量,符合企業特定目的用途。 而意藍在發展出的台灣本土在地化大語言模型eLAND GOAT後,也將其運用在企業知識管理領域中,推出新一代生成式AI知識管理系統-AI Search for KM,不僅提供使用者可以以自然語言的形式進行問答,還結合檢索增強生成(Retrieval-Augmented Generation, RAG)技術,能夠有效地找出精準且相關的內容,藉此提高大語言模型在生成內容的準確性和可靠性,並能夠在每次回應時附上參考內容出處以供驗證,有效避免AI幻覺的可能性。 除此之外,AI Search for KM還可以串接企業知識庫,不需要大量的人力和機器資源重新訓練或微調模型,並且可選擇在雲端、地端或混合部署大語言模型,免除機敏資訊外洩的疑慮的同時,也能快速的從大量的檔案文件中找出所需內容,大幅縮減企業在知識內化的時間成本與負擔,使其能夠更有效地管理和運用知識資源、提升營運效率。

常見問題 FAQ

Q1:什麼是大語言模型 (LLM)?它的運作原理是什麼?

A:大語言模型 (LLM) 是一種模擬人類語言能力的深度學習技術,其運作原理類似於「高階文字接龍」。

LLM 透過分析數億計的文本資料,學習字詞間的上下文結構與語意關係。當使用者輸入指令(Prompt)時,模型會根據已學習的知識,評估並預測下一個字詞出現的機率,進而生成符合邏輯且自然流暢的語言回應。

Q2:大語言模型的核心特點有哪些?為什麼適合企業應用?

A:大語言模型具備上下文理解、多任務適用與大數據訓練三大核心特點。

  1. 上下文理解:能處理複雜文意,生成具備邏輯的長篇回應。

  2. 多任務適用:單一模型即可處理翻譯、摘要、文案生成等多種任務,減少開發成本。

  3. 大數據訓練:掌握豐富知識背景。 這些特點讓企業能將其應用於行銷輔助、決策支持及自動化行政,有效降低人力重複勞動。

Q3:企業如何避免大語言模型產生「AI 幻覺」或亂編答案?

A:關鍵在於優化提問技巧 (Prompt Engineering) 並結合檢索增強生成 (RAG) 技術。

在提問時應盡可能具體並包含上下文訊息,採「逐步引導」方式讓模型推理。此外,導入如意藍 AI Search for KM 這類結合 RAG 技術的系統,強制模型根據企業既有文件回答並附上來源出處,能有效消除 AI 幻覺,確保回覆的真實性。

Q4:企業導入 LLM 時需考慮哪些要素?

A:企業應評估數據隱私控管、系統相容性及部署環境(雲端/地端)。

由於企業資料涉及機敏資訊,需確保模型服務符合資安法規。技術面則需考量現有系統能否無縫介接,以及企業是否具備足夠的計算資源與維運人力。意藍提供的解決方案支援地端部署,能協助企業在不外洩機敏資料的前提下,享有 LLM 的便利性。

Q5:台灣企業如何選擇適合的在地化 AI 模型?

A:建議優先選擇專為繁體中文語境優化、且具備在地語料訓練的模型。

主流國際模型多以英文或簡體中文語料為主,對於台灣特有的商務術語或法規用語掌握度較低。而譬如意藍自研的 eLAND GOAT 專為繁體中文語境優化,能精準理解繁體中文細微的語意差異。此外,結合 RAG 技術與支援地端部署的特性,能確保企業在符合資安規範的前提下,獲得更準確、無偏誤的中文回覆。

想進一步了解更多意藍AI技術嗎?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/09/10</span></br>從 AI 到 AI+:知識賦能無限商機

2024/09/10
從 AI 到 AI+:知識賦能無限商機

揭示 AI 技術的商業潛力 與頂尖專家共話 AI 未來
在數位轉型浪潮中,人工智慧正迅速成為企業創新的核心驅動力。
不管是透過大數據分析描繪客群輪廓;或藉由生成式 AI 提升企業作業效率,人工智慧技術正以驚人的速度顛覆傳統商業模式。
意藍資訊(6925)持續在 AI 領域耕耘,作為首屈一指的智能數據代表廠商,帶領您與頂尖專家共同探索 AI 的無限潛力,掌握智慧賦能帶來的無窮商機。

非常感謝共襄盛舉的貴賓們!

⁕ 與會者回饋 ⁕

user, interface, agent, usability, account, profile, man

企業培訓人員

議程內容非常豐富,
讓人能了解如何透過 AI 協助市場洞察!

user, interface, agent, usability, account, profile, man

企業培訓人員

議程內容非常豐富,讓人能了解如何透過 AI 協助市場洞察!

user, interface, agent, usability, account, profile, man

行銷企劃人員

讓我對社群趨勢有更進一步的了解,
且能了解產業現況很棒!

user, interface, agent, usability, account, profile, man

行銷企劃人員

讓我對社群趨勢有更進一步的了解,且能了解產業現況很棒!

user, interface, agent, usability, account, profile, woman

公關活動人員

Z 世代的分析內容分常豐富,
是很好的議題,有跟上時代潮流!

user, interface, agent, usability, account, profile, woman

公關活動人員

Z 世代的分析內容分常豐富,是很好的議題,有跟上時代潮流!

⁕ 精彩亮點節錄 ⁕

洞察報告》年度社群數據洞察!掌握Threads行銷應用方法

洞察報告》
年度社群數據洞察!
掌握Threads行銷應用方法

意藍資訊團隊改寫活動議程中的「社群板塊趨勢洞察 及 Threads流量密碼解析」,透過「OpView社群口碑資料庫」為您解析近2年的網路口碑趨勢,並揭示最新社群網站來源Threads的行銷應用實例,提供行銷規劃與決策的重要參考。

AI知識庫》行銷公關的智能變革:AI助力品牌戰略轉型升級

AI知識庫》
行銷公關的智能變革:
AI助力品牌戰略轉型升級

eLAND AI知識庫 文章BN003

在「危機變轉機!生成式 AI 如何改變品牌監測策略」議程中,我們分享了隨著人工智慧技術不斷創新突破,各行各業皆迎來前所未有的變革,例如在行銷與公關領域,AI 的應用重塑了品牌解讀市場訊息、與消費者互動的方式,也開拓了企業提升各項決策精準度的可能性。針對此趨勢變化,意藍資訊的 AI 輿情應變顧問及 AI 廣告投手便提供企業在應對公關危機、提升廣告投放精準度等方面的具體應用。

⁕ 精彩議程 ⁕

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴。

錯過了本場沒關係,歡迎訂閱OpView電子報!

除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,

更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

意藍資訊將持續推出不同主題的研討會,深入淺出展示智能數據在商業當中的應用,能夠如何賦能合作夥伴!

錯過了本場沒關係,歡迎訂閱OpView電子報,除了可以收到社群趨勢概覽週報,每雙週我們也會提供產業洞察報告,帶您從社群數據了解各品牌、議題,更能夠在第一時間接收到我們的活動訊息,搶先預訂限量席次!

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/09</span>意藍於「2024未來經理人」展示生成式AI知識管理3大導入指標 及如何藉此提升企業競爭力

2024/09意藍於「2024未來經理人」展示生成式AI知識管理3大導入指標 及如何藉此提升企業競爭力

意藍資訊(股票代號:6925)總經理楊立偉博士,受邀擔任「2024未來經理人年會」講師,向與會菁英們分享如何透過善用大語言模型(LLM)的理解能力,讓結合最新生成式AI技術的知識管理系統為百工百業所用,有效提升知識工作者效率。

數位時代於9月11日舉辦2024未來經理人年會–全員AI 激發團隊十倍生產力,邀請到各科技領域頂尖領袖,與台下超過600位經理人從實務應用角度,交流能如何透過人工智慧在組織、任務、人員管理等層面有效賦能企業,提升產能。

楊博士在會上首先點明知識管理在既有導入流程上的困境:包括在「整理知識」階段,各類型檔案分散難以集中,整理過程耗時費力,而「使用知識」階段,更遇到知識點查找不易、無從下手,或是難以設定存取權限等實務應用時容易遇到的門檻。而結合生成式AI的知識管理系統,能透過AI協助進行檔案分類、內容貼標,並且自動化繪製知識地圖,甚至能做到個人化推薦,對於個人和企業長期發展至關重要。

至於什麼應用情境更適合導入知識管理?楊博士表示可透過組織內的「知識量」、「知識變動率」、「知識用量」三大指標衡量必要性,其一指標較高則應優先導入;而在四大象限中又以市場行銷、資訊技術、研發創新、營運管理等情境的導入更為急迫。

有效的知識管理,能協助企業改善營運效率、提高決策品質、加速經驗傳承與創新,而新一代的生成式AI知識管理解決方案,充分利用了LLM的理解與規劃能力,以自然語言成為各項任務的助手。

意藍資訊在場外攤位展示了在AI管理領域的應用成果,如AI Search for KM新一代生成式AI知識管理系統,便是結合生成式AI、搜尋引擎、NLP技術,並且符合企業權限與資安稽核的檢索系統,除了使用者能夠直接上傳多種格式檔案、設定存取權限,更能與口語化問答進行知識查找,克服既有知識管理流程的各項困境,成功提升組織作業效率達40%以上。

AI Search for KM新一代知識管理系統5大特色:

✔️支援多種格式資料
✔️支援口語化文字問答及全文檢索
✔️具備權限控管機制
✔️可地端/雲端運行
✔️符合企業資安標準

 

感謝在「2024未來經理人年會」前來與意藍一同交流新型技術與實際應用場域的貴賓們!未來我們也會致力於透過AI技術為企業提升營運效率、解決商業問題,持續推出更多創新解決方案,成為企業智能轉型的重要合作夥伴。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>企業知識管理怎麼做?4步驟用生成式 AI 推動 KM

精華文章企業知識管理怎麼做?4步驟用生成式 AI 推動 KM

企業知識管理怎麼做?4步驟用生成式 AI 推動 KM

隨著市場上的競爭日益激烈,如何有效推動知識管理成為了企業提升競爭力的關鍵;然而,許多企業在推動知識管理的初期,常常不知如何起步。知識管理不僅涉及知識的識別、儲存,更包括如何系統性地分享和應用這些知識,本文將介紹知識管理的基本概念,並說明可以從哪些面向著手建立和推動知識管理體系,最後深入探討生成式AI如何為知識管理領域帶來革新。

知識管理概念介紹

知識管理是什麼?
知識管理(Knowledge Management, KM)是指在企業或組織內部,對知識進行系統性的蒐集、保存、組織、分享和應用的過程,將分散在個人、團隊和系統中的知識轉化為整個組織可以利用的資產,進而提升組織的營運能量和整體競爭力。
知識管理如何提升企業競爭力?
知識管理可以透過以下多種面向提高企業競爭力:
  1. 改善營運效率:藉由知識管理,員工可以分享和存取企業或組織內部的資訊,在遇到問題時,也能通過知識庫或企業內部的知識分享平台迅速找到解決方案,避免重新投入時間和資源去解決過去發生過的問題,進而提升生產力與整體營運效率。
  2. 加速創新能力:企業可以透過知識管理,從現有技術和過往經驗中持續學習,並不斷進行優化,加速產品的創新及發展進程。
  3. 提高決策品質:知識管理促進了既有知識與資源的整合,使企業能夠記錄和分析過去的決策及其結果,藉此更準確地預測市場風險和潛在挑戰,加速決策過程並提升決策精準度。
  4. 經驗傳承:知識管理有助於經驗的傳承,除了避免人員重複學習和研究,也可以減少因員工離職或崗位變動造成的知識流失。

企業推動知識管理4步驟

從零開始推動知識管理是一個需要循序漸進的系統化過程,涉及多個層面的協同與整合,而企業可以從以下四個步驟著手:
  1. 知識需求分析:分析企業內部的知識需求,確定哪些知識對企業的運營和發展至關重要,並識別現有知識資源和潛在的知識缺口;同時盤點目前的知識管理狀況,包括知識儲存方式、知識共享文化以及技術基礎設施等,找出需要改進的領域。
  2. 整合發展目標並制定策略:根據需求分析的結果,制定詳細的知識管理計劃,包括如何蒐集、存儲、分享和應用知識,並設定具體的里程碑,將知識管理融入企業發展策略中。
  3. 營造知識分享文化:持續宣導知識分享對於個人和企業長期發展的重要性,除了高層人員以身作則外,也通過培訓、激勵措施或知識管理競賽等,鼓勵員工主動分享經驗與知識,抑或讓知識物件的經營成為員工績效評估的加分專案。
  4. 導入適當技術:結合生成式AI人工智慧技術,對企業內外部知識進行系統性盤點,建構一站式資訊平台,實現 AI 輔助的知識檢索與問答,提供知識的分享、學習、再運用與創新,包括知識地圖、專家黃頁、知識社群、結構化在職訓練及問答等。
而若是原先就有既有知識庫的企業,則可以透過以下方式優化並提升知識運用效率:
  1. 評估現有知識庫:全面審視企業內部的知識庫,包括其結構、格式、內容及涵蓋範圍,識別關鍵知識,以及和潛在需要補強的地方。
  2. 導入新一代生成式AI知識管理系統:對現有知識庫與生成式AI知識管理系統進行整合,並利用AI的自然語言處理能力,提升知識檢索的準確性以及效率。
  3. 即時更新與動態適應:建立即時更新機制,確保知識庫中的內容能即時、動態調整,以快速反映業務需求和市場變化。
  4. 加強處理非結構化資料:透過語意分析技術,將非結構化資料轉換為結構化資料,並結合生成式AI技術,利用其自然語言理解和生成能力,自動化處理大量非結構化資訊,將其轉化為可檢索和使用的知識,提高知識庫的全面性和實用性。

生成式AI對知識管理的影響

隨著生成式AI技術的發展,其為知識管理領域帶來了重要的革新。在技術層面上,它讓知識的檢索變得更為彈性;在應用層面上,則讓使用者能更有效且快速地吸收相關知識。
技術面的影響:搜尋檢索更彈性,更容易學習上手
傳統的知識檢索方式主要仰賴關鍵字檢索與預設的分類樹結構,而這樣的檢索方式存在兩個痛點:
  1. 對於使用者來說,較難將問題轉換成複雜的關鍵字組合進行提問,也因此使用門檻較高。
  2. 關鍵字的檢索多是以「關鍵字組合的出現次數」作為搜尋依據,無法反映出問題與參考文本間的語意關係,造成檢索結果可能與用戶期望有所偏差。
將生成式AI導入知識管理領域後,應用其「自然語言對話」的特性,可以有效解決上述兩個痛點:
  1. 生成式AI允許使用者以自然語句直接輸入問題進行提問,用戶無須把問題轉換成複雜的關鍵字組合,降低了使用門檻。
  2. 生成式AI能夠更好地理解問題的語意,使搜尋結果能夠更準確地反映問題的內容,並找到與問題真正相關的參考文本。此外,生成式AI可以生成淺顯易懂的答案,直接解決使用者的問題。
導入及使用上的影響:更有效的知識吸收與消化
傳統的知識管理,在導入及使用上往往停留在「檔案」層級,使用者須透過關鍵字檢索找到最可能的檔案後,自行閱讀數十甚至上百頁的內容,從中找出與問題相關的資訊,再進一步消化以解答問題;而這樣的架構將使得用戶無法「快速且有效」地吸收、消化知識。 引入生成式AI技術後,這一問題則能得到顯著改善。生成式AI將知識管理提升到「答案」層級,利用AI的語意理解及自然語言問答能力,讓使用者可以直接獲取系統所參考的資料庫中相關檔案的段落,並生成白話回答,協助使用者高效達成知識消化及吸收的目標。

企業導入AI Search for KM之優勢

意藍的AI Search for KM即是整合生成式 AI、高速搜尋引擎與 NLP 技術的新一代生成式 AI 知識管理系統,其所具備的功能特色如下:
  1. 支援多種檔案格式:AI Search for KM系統支援各種常見的檔案格式,包含常用的Office、PDF、文字檔等等,滿足企業需求。
  2. 權限控管機制:確保使用者僅能查詢到自己有權限查看的檔案與文件,避免資料洩露,滿足企業管控機敏資訊、劃分部門權限等需求。
  3. 全文檢索:系統不僅能夠檢索檔案的標題和內文,也能查詢作者及其他相關資訊,提供廣泛且彈性的資料檢索範圍,提升使用者找到所需資訊的效率。
  4. 支援對話問答:AI Search for KM支援使用者以對話問答方式與系統互動,並會根據問題和參考資料提供口語化的回答,幫助使用者輕鬆理解和應用所得知識。
  5. 支援地端或雲端服務:企業可以根據自身需求選擇最合適的部署方式,導入雲端或是地端服務,並可根據不同使用情境和文件資料需求切換不同的大型語言模型。
而對於企業而言,導入AI Search for KM具有以下優勢:
  1. 降低人力成本:透過AI Search for KM自動化搜尋和回答的功能,有效減少員工手動處理知識資訊的需求,簡化知識搜尋與管理流程,節省人力成本。
  2. 提升作業效率:因AI Search for KM支援多種格式的檔案管理,使得資訊不再分散,方便員工找到所需資料,並提供即時準確的回答,縮短員工資訊獲取時間。
  3. 增強知識內化與應用:AI Search for KM支援自然語言互動方式,讓員工能以白話文提問,快速獲得所需知識,從而提升消化和應用知識的效率與準確度。
  4. 強化資料安全與隱私:AI Search for KM的權限控管機制,確保只有具備相應權限的人員才能查找和檢視資料,且系統支援地端服務,能有效防範內外資料洩露風險。
  5. 促進知識共享與協作:AI Search for KM可以整合不同來源的資料,讓各部門的員工都能輕鬆提問和搜尋知識,促進團隊合作交流。
推動知識管理對企業的長期發展至關重要,不僅是提升競爭力的核心,更是確保企業持續創新和應對市場變化的基礎。隨著生成式AI技術的引入,知識管理的應用層次也得到了極大提升,透過導入合適的知識管理系統,企業便能更靈活地管理和運用知識資源,從而在競爭激烈的市場中保持領先地位。

常見問題 FAQ

Q1:企業推動知識管理(KM)的第一步該做什麼?

A:首要任務是進行「知識需求分析」,識別對企業營運至關重要的核心知識。 

企業應先盤點現有的知識資源(如:SOP、技術文件、過往專案經驗)並找出知識缺口。接著,結合企業發展目標制定策略,營造鼓勵分享的組織文化,並導入如 AI Search for KM 等技術工具,將散落的大量資料轉化為可隨時檢索、應用的組織資產。

Q2:為什麼傳統的關鍵字搜尋,無法滿足現代企業的知識管理需求?

A:傳統搜尋主要仰賴「關鍵字出現次數」,難以精準理解使用者的真實意圖與語意脈絡。

傳統方式常導致搜尋結果偏差,且使用者須自行閱讀大量檔案才能找到答案。導入生成式 AI 後,搜尋模式轉變為「語意理解」,使用者可以用白話文直接提問,系統能跨檔案自動彙整資訊並給出直接答案,將知識管理從「檔案層級」提升至「答案層級」。

Q3:生成式 AI 如何解決非結構化資料(如 PDF、Office 檔案)難以管理的問題?

A:生成式 AI 透過 NLP 語意分析技術,能自動化處理並理解大量非結構化資訊。

新一代 GenAI 知識管理工作平台 AI Search for KM 支援多種檔案格式,能將原本難以檢索的 PDF、Word 或文字檔內容進行處理。這讓 AI 具備自然語言理解能力,將零散的非結構化資料轉化為可互動、可問答的知識庫,大幅提升知識的實用性。

Q4:企業導入 AI 知識管理系統時,如何確保內部機敏資料的安全?

A:關鍵在於選擇具備「權限控管」與「支援地端部署」的解決方案。

為了防範資料洩露,AI Search for KM 具備嚴謹的權限機制,確保員工僅能查閱其權限內的檔案。此外,對於資安要求極高的企業,AI Search for KM 支援地端(On-premise)部署,讓資料不出機關內部,在享受 AI 輔助效率的同時,保護資料的隱私與安全。

Q5:導入意藍 AI Search for KM 對企業有哪些具體效益?

A:主要效益體現在降低人力成本、提升作業效率與強化經驗傳承。

  1. 節省成本: 自動化問答大幅減少手動查找資料的時間。
  2. 加速決策: 整合不同來源的資料,協助員工即時獲取準確資訊。
  3. 知識內化: 透過對話式互動降低學習門檻,讓新進員工能快速承接過往經驗,避免因人員離職造成的知識斷層。

想進一步了解「新一代生成式 AI 知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>新一代生成式AI知識管理系統 AI Search for KM 使用情境說明(影片)

精華文章新一代生成式AI知識管理系統 AI Search for KM 使用情境說明(影片)

新一代生成式 AI 知識管理系統
AI Search for KM 使用情境說明(影片)

意藍新一代生成式AI知識管理系統AI Search for KM,高度整合了企業知識管理所必備的搜尋引擎及AI語意分析二大技術,提供獨特的檢索增強生成能力(Retrieval-Augmented Generation,RAG),結合意藍自行研發出的大語言模型—eLAND GOAT,協助使用者以自然口語文字的方式進行「知識問答」與「知識檢索」,免去冗長的導入流程,有效提升組織工作效率和決策支持能力,活化企業知識的使用,從而增強企業組織的競爭力。在技術特點上,提供組織特式化 (specialized) 的地端模型,系統會在使用者權限範圍內的數據內容中篩選出相關參考資料進行回答,可在數秒內獲得 AI 摘要之可信賴結果,可驗證正確性,符合組織權限與資安控管,合乎企業稽核作業規範,是當前企業導入AI最好的起點。
本次我們便以影片形式來為大家展示AI Search for KM的應用情境,以企業員工參與政府標案為例,進行如名詞解釋、是非問答、情境提問等知識檢索與問答。

影片精華

AI Search for KM 應用情境一:名詞解釋
AI Search for KM 可供使用者針對「名詞解釋」來進行發問,並根據參考資料來回答特殊專業領域的知識。例如提問「什麼是押標金?」,便能完整回覆押標金的定義與退還的相關規範。
>>詳細名詞解釋問答情境,請見AI Search for KM 使用情境說明0:42
AI Search for KM應用情境二:是非問答

AI Search for KM 也可以「是非問答」之形式來進行提問,例如詢問「押標金是否可以以匯款方式繳納?」,其便能根據參考資料,判斷問題內容是否正確,並提供匯款的相關資訊。

>>>>詳細是非問答應用情境,請見AI Search for KM 使用情境說明1:04
AI Search for KM應用情境三:情境提問

最後,AI Search for KM還能夠針對特定情境進行理解與判斷,並參考資料進行回覆。例如使用者可以提問「什麼情況下會被機關認定是違約呢?」,AI Search for KM便能正確回覆該情境問題,並統整出違約的情形。

此外AI Search for KM 也可以將知識活化理解後,針對情境問題舉一反三輸出合理的答覆,如詢問「那廠商如何可以避免違約呢?」,AI Search for KM便能依此前提,列點提供廠商可以採取的建議措施。

>>詳細情境提問應用情境,請見AI Search for KM 使用情境說明1:28

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

想即時掌握 AI 實際導入案例與趨勢觀點嗎?

Copyright eLAND Information Co., Ltd.