<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

精華文章Fine-tuning微調是什麼?打造企業專屬AI大語言模型的關鍵一步

Fine-tuning(微調)是什麼?
打造企業專屬AI大語言模型的關鍵一步

隨著 AI 技術的蓬勃發展,AI 大語言模型的應用也日益廣泛,從企業決策到內容生成,各行各業都在探索其潛力。然而,AI 模型有時無法準確回應特定需求,或因對特殊領域的知識有限而產生錯誤資訊,此時除了檢索增強生成(Retrieval-Augmented Generation,RAG)技術外,就需要透過 Fine-tuning(微調)技術來進一步優化、提升模型準確度。本文將帶您了解Fine-tuning的運作原理,並介紹其多元的應用與商業價值。

認識 Fine-tuning(微調)

什麼是 Fine-tuning?

Fine-tuning,也就是微調,是一種針對既有 AI 大語言模型進行優化的機器學習技術,透過調整模型權重,使其在特定應用場景下的輸出結果更準確、符合預期。Fine-tuning 保留基礎模型的能力,同時針對特定領域強化應答準確性,相比從零開始訓練一個新模型,大幅節省了開發所需的成本與時間。

為什麼需要 Fine-tuning?

現成通用的 AI 大語言模型雖然功能強大,但在特定領域如法律、醫療、金融、科技製造等產業中,可能無法精確理解專業術語或規則,甚至可能產生錯誤資訊,無法直接應對每個組織或企業的獨特需求。而透過 Fine-tuning,可以讓模型深度學習特定領域的知識、更準確地理解特定語境,進而提升整體專業性與應用價值,成為企業AI部署的重要步驟。

Fine-tuning 運作流程

Fine-tuning 的作業流程通常包括以下幾個步驟:

  1. 選擇預訓練(pre-train)模型

    透過知識的有效整合與共享,縮短資訊傳遞與行政處理的時間,實現更快速、精準的資源調度。

  2. 準備微調數據

    面對公共政策的制定或緊急事件的處理時,能掌握更即時且全面的資訊基礎,協助決策者迅速做出高品質的判斷與應對。

  3. 調整模型參數

    透過知識管理,政府單位能更有效地整合分散於各部門的資訊,從而妥善梳理並清晰呈現政策內容,促進資訊的公開性與透明度;同時,針對民眾需求或突發事件的回應也能更及時且有力,進一步提升公眾對政府的信任。

  4. 評估與優化

    藉由準確率(Accuracy)、召回率(Recall)、F1分數(F1 Score)等指標來衡量微調效果,並根據測試結果不斷進行調整與優化,確保模型輸出更符合使用者需求。

經過微調的AI模型,能夠更有效地應對高度定制化的需求,對於企業而言,無論在提升業務效率、改善客戶服務,或者優化內部決策過程中,都能發揮重要作用。

Fine-tuning 於企業中的應用

如前段所述,Fine-tuning 不僅是提升模型準確度的工具,更成為幫助企業提升營運效率、降低成本和創造競爭優勢的關鍵,以下進一步彙整 Fine-tuning 在企業中的三大應用價值:

  1. 增強企業專屬化服務

    透過 Fine-tuning,企業能夠調整 AI 模型的回應語氣、風格與內容,從而提供更具個性化的服務體驗。例如,在客服領域,企業可以根據不同客戶群體的特性、偏好或文化背景,調整模型的回應方式,進一步提升顧客滿意度;在科技製造業,許多特殊的產品規格、專業的用字及術語,都可以透過微調模型,讓研發人員在使用上更順暢。

  2. 提升專業知識掌握度

    Fine-tuning 可強化 AI 在特定領域的知識理解與應用能力,特別適用於法律、醫療、金融等高度專業的行業。例如,透過 Fine-tuning,使 AI 更熟悉特定的專利法條文與案例,不僅能幫助法律人員更快地檢索相關判例,還能協助草擬專業的法律文書,從而提高工作效率並確保法律建議的精準性。

  3. 提升業務流程的自動化與效率

    Fine-tuning 可根據企業的運營需求進行調整,使 AI 更精準地理解並執行特定任務,進而提升業務流程的自動化程度與運營效率,並降低人為錯誤。例如,在銷售自動化方面,一家電子商務公司可透過 Fine-tuning 優化 AI 銷售助理,使其根據顧客的購物歷史與個人偏好,自動生成量身定制的促銷訊息或產品推薦。如此一來,AI 不僅能更準確地預測顧客需求,還能主動推送適合的產品與折扣資訊,提高銷售轉化率,同時減輕銷售人員的工作負擔。

Fine-tuning 的優勢與挑戰

綜合來說,Fine-tuning 的核心價值在於 將 AI 從「通用」變成「專屬」,「標準化」變成「個人化」,讓企業能更有效地利用 AI 工具滿足需求。運用微調技術,企業可以大幅減少每次與 AI 互動所需的 Token 數量,從而降低運行成本。此外,企業可在內部環境中訓練 AI,既能確保敏感資料不外流,也能強化資料安全性,而經內部數據微調後的 AI ,能更快速生成精確回應,提升互動流暢度並減少錯誤資訊的風險。

而雖然 Fine-tuning 具有諸多好處,但是也具備一定的技術難度。一般而言,Fine-tuning 需克服的挑戰如下:

  1. 選擇合適的預訓練(pre-train)模型及微調方法

    在技術層面, Fine-tuning 微調可採用多種不同的方法,如何在保留模型原有能力(capability)的同時,又獲得最好的學習效果,需仰賴有經驗的專家給予指導,並進行系統化的實驗。

  2. 準備適當的訓練資料集

    微調數據的數量、品質以及形式都將直接影響最終成果。大量但品質低劣或格式不佳的數據,未必能得到好的微調結果;而具備高品質、形式佳的數據,即便數量有限,仍可透過數據合成(data synthesis)或強化等技術的輔助,也可能有利於微調的成功。

  3. 確保適當的運算資源

    在 Fine-tuning 微調模型時,通常需要比模型推論(inference)更多的資源,如算力和記憶體等,而有時不一定一次就能微調成功,可能需要多回合地嘗試。因此,如何有效地運用算力及資源、提高微調成功率,也是必須克服的挑戰之一。

綜前所述, Fine-tuning 是企業打造專屬 AI 模型的重要技術,能協助企業更靈活應對市場變化、拓展創新應用,無論是提升客戶服務、優化內部流程,或創造新的商業價值,都將成為數位轉型與業務成長的關鍵。若企業希望充分發揮 Fine-tuning 的效益,則可選擇與具備經驗的廠商合作,以降低試錯成本與時間,提高成功率並加速導入。

想進一步了解更多意藍AI技術嗎?
<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>從RAG到eLAND Active RAGᵀᴹ: 開創知識管理新篇章

精華文章從RAG到eLAND Active RAGᵀᴹ: 開創知識管理新篇章

從RAG到eLAND Active RAGᵀᴹ:開創知識管理新篇章

在數位化時代,資訊量爆炸式增長,如何有效地蒐集、整理、儲存並運用知識,無疑是各企業組織提升競爭力的關鍵之一,良好的知識管理不僅能縮短決策時間,還能提高員工效率、促進創新,以在快速變化的環境中保持彈性與活力。檢索增強生成技術(Retrieval-Augmented Generation, RAG)的出現,為知識管理帶來了全新突破,而透過引入多輪次資料整合與更高效的檢索能力,意藍進而將RAG 技術發展為獨家專門的eLAND Active RAGTM(主動式檢索增強生成技術),大幅提高知識管理的效率與精準度,使各部門單位能更靈活應對多變的市場需求。

本期 AI 知識庫亮點

主動式檢索增強生成技術如何重塑知識管理
  1. 認識eLAND Active RAGᵀᴹ ── 主動式檢索增強生成技術
  2. 導入主動式檢索增強生成技術對知識管理的影響
eLAND Active RAGᵀᴹ 在知識管理中的應用實例

主動式檢索增強生成技術如何重塑知識管理

知識不僅是企業組織日常運營的基礎,更是其持續發展和創造價值的核心驅動力,透過有效的知識管理,能夠累積並共享內部專業知識,進而減少重複性工作,促進跨部門合作、優化決策過程並提高運營效率。然而,傳統的知識管理方法往往面臨資訊分散、無法即時更新及搜尋效率低下等挑戰,使得企業在應對快速變化的業務需求時,可能需投入較多時間和資源以達成目標。

而檢索增強技術的出現,逐步突破了這些障礙,它結合了搜尋引擎快速檢索的優勢與大語言模型的生成能力,在生成答案前先檢索最新的相關資訊,以確保結果更可靠精準。特別是意藍所獨家發展之進階版本——主動式檢索增強生成技術(eLAND Active RAGᵀᴹ),更是在此基礎上實現突破,能針對複雜的問題進行多回合查詢,逐步完善答案,大幅提升知識檢索效率,為知識管理帶來嶄新的轉機。

認識eLAND Active RAGᵀᴹ ── 主動式檢索增強生成技術
eLAND Active RAGᵀᴹ(主動式檢索增強生成)是在RAG(檢索增強生成)的基礎上進一步升級的技術,具備以下核心功能特性,使其在知識管理中更具優勢:
  1. 內外部數據動態整合:
    eLAND Active RAGᵀᴹ 能根據問題性質,自動判斷最佳數據來源,從內部系統、資料庫以及外部網站等多元數據庫中進行查詢,並進行綜合分析,使生成之回覆不再僅依賴過時數據,而是根據最新資料產出精確、全面的結果。
  2. 語義理解與推理:
    與傳統基於靜態關鍵詞的檢索方式不同,eLAND Active RAGᵀᴹ 能夠理解語句的語義,並依據問題的背景進行推理和回應,使結果更相關且精準。例如,對於問題「如何優化員工的工作流程?」,系統會理解問題的核心是提升工作效率,並基於此提供具體的建議,如檢視現有工具的使用情況、引入自動化流程或改善跨部門協作等。
  3. 多回合查詢與自主優化
    eLAND Active RAGᵀᴹ 能根據已獲得之初步資訊動態調整查詢策略,多回合查詢以逐步完善答案,從而實現更深入的問題解決和分析。例如,對於「如何提升某產品市場佔有率?」的提問,在第一輪查詢時先自內部資料中提取產品的銷售數據,提供概括性分析;接著,再根據已取得的結果,進一步從外部資料庫提取相關細節,如競品的市場策略、消費者對產品的反饋等,於後續查詢中補充數據背景或上下文資訊。
導入主動式檢索增強生成技術對知識管理的影響
綜上所述,導入主動式檢索增強生成技術將對知識管理帶來深遠影響,主要體現在以下幾個方面:
  1. 提升數據整合能力,突破資訊孤島
    支援內外部數據的動態整合,能夠從企業內部資料庫、檔案系統到外部網站、公開數據源中提取所需資訊,並進行綜合分析,有效解決了傳統知識管理中數據分散、無法即時更新的難題。
  2. 增強問題理解與回應的精準性
    理解使用者提問的核心意圖,並結合問題背景進行智能推理,提供更精準且相關的答案,大幅提升知識檢索的有效性,避免使用者因模糊或不相關的資訊浪費時間。
  3. 提升知識應用價值
    透過 eLAND Active RAGᵀᴹ,能將分散的資訊轉化為結構化且易於應用的知識,例如生成與決策相關的報告或建議方案,協助企業組織快速識別業務機會或解決問題,抑或縮短內部問題回應時間、提升市場預測準確度,進而實現更高效的資源配置。

eLAND Active RAGᵀᴹ 在知識管理中的應用實例

意藍的新一代生成式AI知識管理系統 AI Search for KM 便結合了 eLAND Active RAGᵀᴹ 以及搜尋引擎、NLP與大語言模型等技術,提供使用者更高效、智能的知識搜尋與問答服務體驗,其應用情境相當多元,對複合型知識任務具備強大處理能力,能夠主動拆解複雜問題並完成知識任務,以下將舉例說明。
當對系統提問「少子女化對社會產生什麼樣的衝擊?」,在 eLAND Active RAGᵀᴹ 的輔助下,系統將依循以下步驟進行運作,確保提供精準且有所依據的回答:

  1. 拆解任務及選用工具

    系統首先分析問題,識別核心關鍵字(如「少子女化」、「社會衝擊」),並將問題拆解為可操作的子任務。接著,系統檢視可用的資料來源,如政策資料庫、最新的媒體報導、少子女化相關的學術研究與報告等,並選定最符合此問題的資料來源作為後續查詢的基礎。

  2. 生成輸入參數

    根據問題內容與選定資料庫,系統會再進一步生成適配的查詢參數,即設定一組適合用來搜尋資料的條件,並以設定之參數為基礎,啟動後續資料檢索過程。例如:

    – 關鍵字:少子女化、社會影響、政策、新聞、研究計畫。
    – 時間範圍:過去1年的相關資料。
    – 查詢格式:結構化的API請求或自然語言查詢。

  3. 解析輸出結果

    接著,系統會對檢索到的資料進行整理與分析,例如自少子女化相關的新聞報導中,統計出過去一年該議題的討論成長率,或是從研究資料中,彙整人口統計變化以及對社會經濟的具體影響點。

  4. 進行判斷及回覆

    最後,系統將檢視目前取得的資訊是否足以回答問題。若資訊足夠,則系統便會根據統計之結果與分析,生成針對使用者提問的回答,如「少子女化對社會的衝擊包括勞動力減少、教育資源分配過剩及老齡化社會負擔增加等。」
    而若判斷資訊仍不足,系統則會重新進行檢索、調整參數(如擴大時間範圍或查詢更多資料庫),最多重複三次,以確保回答的完整性與準確性。

無論是企業組織或公部門單位,在 AI Search for KM 及 eLAND Active RAGᵀᴹ 的助力下,將能夠實現更高效、更精準的資訊處理與應用,發揮知識管理的最大價值。

想進一步了解「新一代生成式AI知識管理系統(AI Search for KM)」?

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">精華文章</span>電商流量成長新佈局:4大策略x 3大AI解決方案 助力經營效率再升級

精華文章電商流量成長新佈局:4大策略x 3大AI解決方案 助力經營效率再升級

電商流量成長新佈局:
4大策略x 3大AI解決方案 助力經營效率再升級

在競爭激烈的電商環境中,如何吸引潛在顧客、推動平台流量成長,並為消費者提供更快速、精準的購物體驗,是各電商平台的核心經營目標。本文將帶您了解實用且多元的電商流量成長策略,並介紹多種AI解決方案,助力電商實現流量與效益的雙重突破。

本期 AI 知識庫亮點

電商流量成長策略

為了提升消費者體驗並擴大品牌曝光,電商品牌可以從以下4個面向著手,實現流量增長與營運效益提升:

(1)SEO 與內容經營 ── 提升搜尋排名與用戶黏著度 SEO(Searching Engine Optimization,搜尋引擎優化)是提升網站於搜尋引擎中排名的重要策略,透過精準的關鍵字使用與內容經營,能讓消費者快速找到所需資訊,進一步增加停留時間與轉換率。此外,打造清晰且具吸引力的商品文案,不僅能有效傳遞商品價值與特色,還能減少消費者在搜尋與比較的時間成本,讓購物體驗更加流暢;另外,還可藉由埋入關鍵字,來有效提升搜尋引擎排名,獲得更多自然流量。因此,透過持續經營內容與文字,電商品牌能建立起更專業形象,增加顧客對品牌的信任與黏著度,最終提高轉換率。
(2)精準廣告投放 ── 用數據鎖定你的客戶: 對於電商來說,廣告是吸引消費者的重要方式,但若廣告目標不夠明確則可能會使得廣告費用被使用於無效受眾上。因此,透過數據分析來精準投放廣告,品牌便能夠鎖定潛在目標客群,確保廣告能夠觸及最具轉化潛力的消費者群體,從而降低廣告成本並提高 ROI(Return on Investment,投資回報率)。此外,根據廣告投放的即時數據,還能動態調整廣告內容與預算,發揮每一分廣告預算的最大效益。當廣告內容精準貼合消費者需求時,點擊率與轉換率自然也能同步提升,讓電商品牌獲得更穩定且高效的流量。
(3)網紅/KOL 行銷 ── 借力影響力,放大品牌曝光 現代消費者的購買決策常受信任的網紅或KOL(Key Opinion Leader,意見領袖)推薦影響,使得網紅行銷成為電商提升品牌曝光重要策略之一。因此,對於電商品牌來說,若能借助特定KOL將產品推廣給目標受眾群體,進而引起消費者的興趣與共鳴,不僅可藉網紅/ KOL的影響力來擴大品牌知名度,還能進一步建立起社群對電商品牌的信任。
(4)輿情監測與應變 ── 洞察消費者聲音,掌握市場脈動 另外,輿情監測在電商經營中也扮演著至關重要的角色,透過即時監測社群討論趨勢,能夠快速掌握消費者的聲音,及早做出應對策略。同時,輿情監測也能幫助品牌了解競品動向,預測市場變化,並提前抓住行銷機會。當品牌能夠在輿論發酵時迅速應變,針對消費者需求提供有效回應,不僅能有效預防潛在的公關危機,還可進一步提升顧客滿意度。

導入意藍AI解決方案,電商經營效率再升級

隨著消費者需求日益多元,電商品牌必須要更精準掌握消費者意圖,因此若能善用AI解決方案,便可以更有效地的優化營運、提升競爭力,並且可以協助電商品牌實現流量成長,創造更好的經營成效,以下將介紹由意藍資訊提供電商品牌的3大AI解決方案。
AI Search for EC ── 搜尋推薦體驗升級、SEO建立與優化

首先,由意藍專為電商所打造的「新一代智能貼標與搜尋推薦系統 – AI Search for EC」,運用最新的AI語意分析,能自動識別商品標題與描述,提取關鍵詞作為標籤,提升搜尋精準度與推薦功能,幫助顧客快速找到符合需求的商品與快速理解商品價值,有效提升消費者使用體驗。
而透過語意分析與AI模型貼標,AI Search for EC 不僅能理解顧客的消費意圖,還能提供個性化的商品推薦,如搜尋口紅的同時,還能藉由標籤同時找出相近的唇膏、唇釉等商品,即便消費者使用不同詞彙進行搜尋,依然能精準配對相關商品,除此之外,AI Search for EC還結合如外部搜尋量、網路聲量、銷量等指標,並具備數據即時更新的能力,提供更貼合市場與消費者需求的推薦結果,動態反映市場趨勢,為電商提供與時俱進的競爭優勢。

AI Search for EC 應用範例
▲ AI Search for EC 應用範例
AI 智能廣告投手 x 頻道影響力 ── 精準鎖定目標客群、篩選合作KOL

除了針對商品進行貼標,推薦最適商品給消費者外,還可以從廣告投放著手,來帶動電商流量成長。意藍基於《OpView社群口碑資料庫》的口碑輿情數據與AI智能模型所推出的「AI智能廣告投手」,透過分析社群輿情數據精準了解消費者的關注重點及受眾樣貌,進而推薦 Google Ads 標籤、Meta 標籤,以及意藍 PeopleView 人群標籤,將熱門話題與廣告策略有效連結,幫助電商品牌做出更準確的廣告決策。

▲ AI 智能廣告投手 應用範例

而再結合《OpView社群口碑資料庫》的頻道影響力模組,就可進一步針對Facebook、Instagram、YouTube等超過10萬個頻道,解析發文內容,透過多樣性的量化指標來衡量KOL的社群互動表現,確認關注該KOL的受眾樣貌與品牌想鎖定的客群是否契合,篩選出合適的KOL進行合作,實現更精準的流量轉化與品牌曝光。

▲ OpView 頻道影響力模組 應用範例

AI輿情應變顧問 ── 即時掌握輿情變化、獲得行銷建議與策略
最後,想要加強電商平台的流量成長,輿情監測也是不可或缺的一環,不僅可以迅速排查負面口碑聲量、即時調整行銷策略,還可以掌握社群趨勢脈動、洞悉消費者需求。而「AI 輿情應變顧問」便是結合意藍DeepNLP 技術與大型語言模型,讓使用者以自然語言的形式進行問答,幫助快速梳理大量輿情文本並生成議題摘要,節省人力與時間,協助即時掌握輿情變化的AI解決方案。
AI輿情應變顧問奠基於《OpView社群口碑資料庫》的社群輿情數據,不僅能即時統整輿情重點,還能清楚標示資訊來源,清晰掌握市場動向。以電商品牌為例,若向AI輿情應變顧問提問有關競品的相關資訊,系統便會快速彙整社群輿情變化,協助電商使用者獲取競品的活動狀況與行銷建議,挖掘出市場偏好來制定精準策略。

▲ AI 輿情應變顧問 應用範例

電商平台除了透過SEO、精準廣告、網紅行銷和輿情監測等策略來提升流量成長與經營效益。還能結合各式AI解決方案,來精準掌握消費者需求與市場趨勢,優化搜尋推薦與廣告投放,進一步提升消費者體驗和品牌曝光。
<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/12</span>意藍AI Search智能搜尋解決方案  獲113年人工智慧技術服務機構能量登錄認證

2024/12意藍AI Search智能搜尋解決方案 獲113年人工智慧技術服務機構能量登錄認證

意藍資訊(股票代號:6925)日前取得數位發展部數位產業署113年人工智慧技術服務機構能量登錄認證,展現在AI技術應用領域的卓越能力。此次通過認證的服務包含AI Search for KM新一代生成式AI知識管理系統,以及AI Search for EC智能貼標與商品推薦系統;將生成式AI與公司搜尋、語意分析、資料處理等核心技術做結合,針對產業痛點打造可實際落地之解決方案。

AI Search智能搜尋系列服務乃意藍針對不同產業需求提所提供之智能搜尋解決方案,本次AI Search for EC、AI Search for KM更是分別取得「產品服務智慧推薦搜索」、「人工智慧離線API程式庫開發」、「虛擬助理」等多項認證,象徵著意藍人工智慧核心技術能力與⾏業應⽤能⼒的肯定。

AI Search for KM整合了高速搜尋、自然語言處理與生成式AI技術,替組織專屬的知識庫打造如同ChatGPT般的知識問答能力,不僅促進知識流通、提升組織作業效率,更提供地端專屬模型與雲端服務兩種導入方式,符合權限要求與資安/稽核規範;而AI Search for EC則是意藍專為電子商務打造的智能搜尋與推薦系統,憑藉自主研發的AI語意分析模型與搜尋引擎技術,自動提取商品特徵詞以生成商品標籤,亦能分析商品外部搜尋量、網路聲量及銷量等多項指標,精準推薦符合顧客需求的商品,全面提升消費者體驗與商家營運效益。

展望未來,意藍將持續深耕於AI應用領域,推廣生成式AI技術在百工百業的應用,致力成為智能轉型的領航者,協助企業與組織實現智能升級,共同應對未來科技革新的挑戰。

AI Search for KM
新一代生成式AI知識管理系統

AI Search for KM 乃意藍資訊整合生成式 AI、高速搜尋引擎、獨家 NLP 技術,並擁有領先業界的知識管理經驗,為組織單位實現更卓越且智能的知識搜尋與問答服務。

AI Search for EC
新一代智能貼標與搜尋推薦系統

AI Search for EC 是專為電子商務打造的 AI 搜尋引擎。協助企業品牌連結消費者與商品的橋樑,打造更好的商品搜尋與推薦體驗,讓消費者更快找到需要的商品。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/12</span>意藍資訊榮獲「第12屆智慧城市創新應用獎」,以生成式AI賦能知識管理

2024/12意藍資訊榮獲「第12屆智慧城市創新應用獎」,以生成式AI賦能知識管理

意藍資訊(6925)作為國內首屈一指的AI智能數據代表廠商,推出多項可實際落地之AI解決方案,本次更以「AI Search for KM 新一代生成式AI知識代理人平台」榮獲第12屆(2025)智慧城市創新應用獎,展現了AI技術在智慧城市應用中的創新潛力和實際價值。

本屆智慧城市創新應用獎共計收到94報名件數,涵蓋智慧治理、智慧交通、智慧醫療等多元領域,最終企業暨財團法人創新應用組共5件入選,競爭激烈。評選標準包括創新性、功能性、場域試煉效益,以及AI(人工智慧)與大數據的整合應用,而意藍的「AI Search for KM」憑藉其卓越的技術與應用價值,再次獲得評審肯定,締造佳績。

AI Search for KM 新一代生成式AI知識代理人平台
榮獲第12屆(2025)智慧城市創新應用獎

AI Search for KM 即新一代生成式 AI 知識管理系統,意藍資訊整合生成式 AI、高速搜尋引擎、獨家 NLP 技術,並擁有領先業界的知識管理經驗,為企業實現更卓越且智能的知識搜尋與問答服務。

意藍資訊(6925)深耕AI語意分析、搜尋與資料處理技術近20年,本次獲獎的「AI Search for KM新一代生成式AI知識代理人平台」以大型語言模型與生成式AI技術為核心,結合NLP與搜尋技術,實現智能化的知識搜尋與決策支持服務。

公部門進行智慧治理時常會遇到的挑戰,如大量且分散的非結構與結構化資料不易進行活化運用,且還需滿足組織權限控管及AI規範要求,故意藍AI Search for KM結合生成式 AI、搜尋引擎與 NLP 技術,克服了業界於應用AI時,易產生AI幻想、機敏資料洩漏風險等技術難點,並突破技術限制,打造不需額外訓練模型、不受模型長度限制之智能知識問答平台,符合權限與政府資安/稽核規範,同時可提升公部門作業效率 40% 以上。

以智慧政府實際應用為例,AI Search for KM可在多種情境下協助各組織單位更輕鬆地進行知識檢索與完成任務。如作為循證治理工具,AI Search for KM能分析施政成果與社會趨勢,提供具循證價值的政策建議,支持決策者精準應對公共議題與政策挑戰,全面助力智慧化治理的實現;此外,透過生成式AI與自然語言模型,再整合單位過往歷史數據,國家災防單位藉此建構一歷史資料問答平台,可快速調取災害管理或施政數據,以提升事件處理與應變效率;而應用於地方政府陳情客服輔助時,當單位人員輸入收到的民眾陳情內容,系統便能先去除其中的個資及敏感資訊,嚴格控管資安不外洩,再將陳情內容清整後與過往陳情案件進行比對,最後透過生成式AI自動生成回覆模板,包含案件摘要、處理方式及聯繫資訊,幫助地方單位全面提升客服效能,減輕人力負擔。

作為國內智能數據代表廠商,意藍AI Search for KM協助公部門建構AI就緒資料(AI-ready data)之知識庫,從數位治理提升到循證治理,故本次意藍獲獎智慧城市創新應用獎,不僅是對意藍AI與大數據技術之肯定,也標誌著AI Search for KM知識管理解決方案於公部門應用的實際價值。未來意藍也將繼續與國家單位、客戶、合作夥伴攜手,共同迎接生成式AI的挑戰與機遇,實現更智慧的城市未來。

<span style=" display: block; font-size: 0.8em; font-weight: 100; color: #A5A3A3;">2024/11</span>意藍資訊攜手產學界推動社群大數據分析校園競賽 助力培育未來數據人才

2024/11意藍資訊攜手產學界推動社群大數據分析校園競賽 助力培育未來數據人才

由中華商管教育發展學會、國立臺北商業大學、創集團與意藍資訊共同主辦的「2024全國社群大數據分析校園創新競賽」近日圓滿落幕。本屆賽事命題聚焦企業實務,吸引全國各大專院校共147支隊伍、539名學生報名參賽,透過社群觀測平台與網路輿情分析工具,深度剖析產業趨勢及品牌行銷策略,充分展現新世代對數據分析與商業應用的熱情與實力。

決賽現場匯聚多位產學界專家,包括國立暨南大學國際企業學系副教授陳靜怡、東吳大學企業管理學系副教授劉秀雯、台灣行銷科學學會顧問邵功新、創集團執行長黃瓊儀,以及意藍資訊策略行銷處副總經理張建文,針對參賽作品的數據解讀能力、創新構想與商業應用價值進行多面向評選。

此次競賽主題涵蓋品牌行銷、產品創新、用戶行為研究等多元議題,展現數據分析在現代商業決策中的核心價值。來自9所大學的12強隊伍各自聚焦6家品牌的不同實務挑戰,最終銘傳大學「美少女戰士」團隊榮獲第一名,他們以黑橋牌為例,探索如何結合品牌傳統核心價值與大數據分析,打造全新商業模式,憑藉實證數據與創新思維贏得評審一致肯定;第二名為國立高雄科技大學「牛菌絲」團隊,他們以EDWIN為例,針對零售市場多通路整合的趨勢,探討如何利用大數據深入了解消費者購物行為,為品牌設計更精準的行銷策略;第三名為國立高雄大學「Please give me more time to meet you」團隊,他們透過分析行車紀錄器市場現有需求缺口,提出故事行銷、創造領袖人物等解決方案,獲得專家高度評價。

作為數據分析領域的先驅,意藍資訊長期致力於「創新」、「教育」、「人才培育」三大面向,透過持續參與並贊助校園競賽、學術研討會及專業會議,意藍不僅提供創新數據解決方案,更積極培育數據分析領域的專業人才。本次競賽再度印證教育與實務結合的重要性,為學生從學術走向商業應用搭建橋樑。展望未來,意藍將持續推動數據分析與 AI 技術的應用與發展,攜手產學各界共創更加完善的數據生態!

名次 獲獎隊伍
第一名 銘傳大學企業管理系 – 「美少女戰士」
第二名 國立高雄科技大學智慧商務系 – 「牛菌絲」
第三名 國立高雄大學資訊管理系 – 「Please give me more time to meet you」
佳作

「貓咪喵喵隊」、「東亞帝國」、「愛會消失對不隊」、「四星彩沒簽隊」、「飛越極限」、
「肥嘟嘟五衛門」、「衣輪遊」、「青島東路走九遍」

Copyright eLAND Information Co., Ltd.