《Social Lab社群實驗室》8月份熱門主題包含鬼月禁忌、登革熱症狀等…….繼續閱讀
《Social Lab社群實驗室》8月份熱門主題包含鬼月禁忌、登革熱症狀等…….繼續閱讀
生成式AI所依靠的其中一個技術便是「大型語言模型」(Large Language Model, LLM),其特色在於訓練過程中,模型可以自大量資料中自行學習和理解每個詞、每個句子之間的關係與背後的意義,最後根據指令,提供符合邏輯的自然語言回應。好比文字接龍,參與者需要根據已知的詞語來生成符合規則的新詞語,大型語言模型在接收問題後,會基於訓練數據和上下文,來評估問題背後最高機率會出現的字詞是什麼,然後一字一字生成出來,最終形成完整且符合邏輯的回答。
而相較於傳統的自然語言處理技術,大型語言模型的優勢有三:不過,從2023年劍橋字典選出的年度代表字:Hallucination,幻想,其實就反應了AI的可信賴性是一大挑戰,因為生成式AI對於沒看過的資訊會想辦法拼湊出答案。模型生成的內容可能表面上看起來合理,實際上卻缺乏真實的參考來源,這種現象在回答專業知識問題時更為明顯,因為模型可能傾向根據在訓練數據中學到的資料來生成答案,而非真正理解問題及實際參考文章來進行答覆。
面對上述問題,檢索增強生成(Retrieval-Augmented Generation, RAG)技術是一個良好的解決方案。RAG是2020年由Patrick Lewis提出,其結合了檢索和生成式AI的優勢,首先檢索外部資料庫中的相關資訊,再基於這些資訊生成回答,藉此減少憑空杜撰的可能性、增強回覆的相關性和真實性,進一步提升問答效果,確保符合實際應用需求。
▲檢索增強生成技術(Lewis, P., 2020)
▲思維鏈(Wei, J., 2022)
在進行政策評估時,會需要針對如會議記錄、訪談內容、問卷中的開放式問題或網路輿情等資料進行質性分析,以歸納出多元利害關係人的相關意見或質疑。此時,結合自然語言處理(Natural Language Processing, NLP)技術與大型語言模型(Large Language Model, LLM),便能夠讓分析更有效率,避免過去逐篇檢視文本後才能找出重點的耗時過程。
首先,為瞭解民眾對於議題有哪些重要的意見面向,可藉由AI語意模型對民眾言論文本進行「重要關鍵字提取」與「語意相似度計算」,並輔以分群演算法將相似討論進行歸類,拆解出不同的討論面向,作為政策評估時的參考。下圖是「晚婚 / 不婚議題」在社群討論當中的分群結果,圓圈大小代表討論的顯著(集中)程度,而圓圈彼此之間的距離則代表討論的相似程度。
針對政策評估時所蒐集的大量質性資料,過去往往需要花費大量時間解讀,才能從中找出關鍵課題。透過檢索增強生成(Retrieval-Augmented Generation, RAG)技術,將搜尋引擎與生成式AI優勢相融合,便能快速將文本資料中的重點知識內容,轉化成淺顯易懂的重點說明。
首先,搜尋引擎能夠直接對多種格式的文件進行文本上的解析,在搜尋時也能夠進行跨檔案的比對;生成式AI演算法則可以探索和分析複雜的資料。在針對某個議題、概念進行研究時,「搜尋引擎 + 生成式AI」能夠即時從龐大的資料庫中搜尋相關命中段落,並將這些內容快速摘要呈現;透過理解語言的結構和語境,也能確保命中段落的展示是精確且相關的。
簡言之,RAG是在檢索讀取(Retrieve-Read)的框架下進行搜尋(Yunfan, G. ,et al, 2023),能夠識別並找尋給定的相關資訊需求(Zhao, P. , et al, 2024),基於對命中段落的理解,使生成式AI能夠進一步生成摘要,協助使用者在短時間內獲得專業且易理解的回覆,避免在研究、搜集過程中浪費時間在無關或不確切的資訊上。例如,面對大量的訪談逐字稿文件,透過RAG技術進行知識搜尋與知識問答,分析者不僅能彙整並凸顯資料中的重要發現,還能驗證對特定解釋的認知是否正確。此外,它也提供了深入洞察,如識別特定發言者在資料中的關鍵觀點,或對比不同發言者對同議題的立場。
下圖呈現RAG技術如何在資料中發現重點,針對公正轉型研討會講座文字記錄文件進行提問,試問「女性在公正轉型中會受到什麼影響」,RAG迅速對該文件進行搜索,並以條列式回覆重點摘要,同時將參考段落的位置標示出來。
隨著市場上的競爭日益激烈,如何有效推動知識管理成為了企業提升競爭力的關鍵;然而,許多企業在推動知識管理的初期,常常不知如何起步。知識管理不僅涉及知識的識別、儲存,更包括如何系統性地分享和應用這些知識,本文將介紹知識管理的基本概念,並說明可以從哪些面向著手建立和推動知識管理體系,最後深入探討生成式AI如何為知識管理領域帶來革新。
隨著AI人工智慧技術不斷創新突破,各行各業皆迎來前所未有的變革,例如在行銷與公關領域,AI的應用便重塑了品牌解讀市場訊息、與消費者互動的方式,也開拓了企業提升各項決策精準度的可能性。本文將帶您探討AI如何為行銷公關領域注入新動能,並藉由意藍的解決方案實際展示AI技術在應對公關危機、提升廣告投放精準度等方面的具體應用。
▲王品集團食安事件 公關危機三階段
▲王品集團食安事件 輿情應變問答範例(前期)
▲王品集團食安事件 輿情應變問答範例(中期)
▲王品集團食安事件 輿情應變問答範例(後期)
上段說明了AI技術的導入如何賦能企業迅速掌握輿情、有效應對公關危機;而除此之外,AI技術亦能為精準行銷、廣告投放等領域注入新動能。對於品牌而言,準確識別目標受眾並制定有效的行銷策略,可說是提升轉換率、加強顧客忠誠度的關鍵課題,而若企業品牌想要針對目標市場,精準觸及到關注自身或特定輿情的受眾,意藍的AI智能廣告投手便能有效提供協助。
▲AI智能廣告投手亮點特色
▲玉山、國泰世華信用卡話題討論之受眾標籤;資料分析期間:2024Q1
▲AI智能廣告投手 特定KOL受眾標籤
意藍資訊(股票代號:6925)參與2024未來商務展,活動現場除了展示產品最新研發成果,為企業智能轉型痛點提出 AI 解決方案,同時,也非常榮幸地獲得FCA創新商務獎兩項肯定:
在未來商務展的展商發表會中,商業分析師邱鈺傑分享了意藍如何運用 AI 技術結合輿情資料,提升企業作業效率與策略執行成效,並以實際案例展示導入「AI Search for EC 新一代智能貼標與搜尋推薦系統」的效益,知名通路電商平台導入系統後,經由系統自動掃描、分析全站近十萬筆商品的各式資訊,包括標題、特色、商品描述等,產出能代表商品的重點標籤,進而精準呈現與消費者意圖相符的搜尋結果;藉由組合這些多元的標籤,系統也能推送顧客高機率感興趣的商品,改善整體消費體驗,提高消費者停留在網站中瀏覽其他商品的意願,進一步提高轉換率。
此外,攤位上更展示了意藍資訊在智能搜尋及雲端分析服務領域的多樣應用成果,協助品牌企業解決智能轉型的痛點與困擾。如「AI Search for KM 新一代生成式 AI 知識管理系統」,結合了最新 AI 技術,有效幫助使用者以自然語言高效且準確地搜尋企業內部的各類格式檔案和權限資料,且支援導入地端和雲端服務,滿足不同規模和需求的企業。感謝在「2024未來商務展」前來與意藍一同交流新產品與應用的貴賓們!
在數位轉型浪潮中,AI 正迅速成為企業創新的核心驅動力,意藍資訊將持續致力於 AI 技術的研究和應用,為企業提供更多創新智能解決方案。




《Social Lab社群實驗室》7月份熱門主題包含火氣大、產後憂鬱症狀等…….繼續閱讀
《Social Lab社群實驗室》6月份熱門主題包含重訓好處、曖昧解暈方式等…….繼續閱讀
自然語言處理(Natural Language Processing,NLP)是AI技術的一種,目的在讓電腦能「理解」並「說出」人類的語言,而意藍DeepNLP深度語意分析模組則是商業化運用最成熟的NLP技術產品之一。本文除了說明自然語言處理技術的原理與優勢外,也將同步介紹意藍DeepNLP技術與AI應用的結合。
自然語言處理(Natural Language Processing,NLP)是AI人工智慧的一個分支領域,旨在讓電腦能夠「聽得懂」和「說得出」人類語言。
在自然語言處理的領域中,包含以下幾種常見的技術:
大語言模型的發展推動了自然語言處理技術的進步,透過持續的訓練模型,可以更強化自然語言處理的效果,包含:
隨著近年生成式AI技術的竄起,意藍也跟上這波技術革新的潮流,基於原有的搜尋技術與DeepNLP技術,再結合生成式AI技術如大語言模型來優化產品服務與體驗,包括:
意藍將DeepNLP技術與大語言模型結合,提升產品服務多樣性,藉由AI協助企業客戶簡化輿情分析、知識檢索的繁瑣流程與成本,實現更全面的商業應用服務。
感謝北大師生來訪意藍資訊,共同關注智能數據產業的生態與未來!…….繼續閱讀
意藍資訊 (6925) 是國內首家公開掛牌的AI智能數據代表廠商, 憑藉自有核心技術 Search搜尋、NLP語意分析、ETL數據處理,更進一步結合生成式AI,為企業/組織提供多元的新一代AI智能解決方案。
為即時蒐集社群輿情中的災情資訊,意藍擷取分析眾多公開網站頻道的資料源,涵蓋各大公開媒體、Facebook粉絲團、Dcard、巴哈姆特各地區版、Mobile01地區版及PPT地區版等等,將巨量資料結構化並過濾之後,透過意藍的搜尋引擎,便可針對大量資料做搜尋。
接著,透過語意分析技術,讓AI自動判別每一篇災情文章內容中提及的地理資訊、災害事件以及災情程度等,將這些重要詞彙辨識出來並自動標記。
最後,將這些社群輿情中的災情內容與AI自動標記之結果,展示在分析儀表板上,讓災害防救應變相關單位可以利用搜尋快速找到相關內容,並從儀表板了解與統計各個地方民意反映的災情狀況、發生頻率等等,以利後續分析和災防治理。
配合災害防救單位之需求,意藍利用生成式AI與自然語言模型,整合歷史災害防救數據,結合eLAND的AI Search For KM服務,建立災害防救事件問答系統,幫助災害管理或救援人員應對自然災害的挑戰。
災害防救單位可針對歷年災害事件做問答,AI Search for KM系統會依據提問找到多個參考段落,再由大語言模型綜合歸納出完整的答覆。以下為幾個問答情境:整合各來源資料,並透過意藍DeepNLP技術,分析民眾陳情情緒、擷取陳情內容特徵資訊等,整理成結構化資訊。
接著,採用意藍搜尋引擎技術,讓使用者可以藉由彈性的檢索條件快速查詢到想了解的特定陳情案件。
最後則進一步將結構化後的陳情資料整合成儀表板,提供視覺化圖表供使用者可以快速、清晰的了解案件概況與量化數值,並應用於後續分析。
在此項解決方案中,政府單位人員可直接輸入收到的民眾陳情內容,陳情問答輔助服務會先去除其中的個資及敏感資訊,嚴格控管資安不外洩,再將陳情內容清整後與過往陳情案件進行比對,獲取與本次陳情相關、過往曾經處理過的案件資訊,並透過生成式AI整合後產出AI自動回覆模板,輔助政府單位人員更有效率的回覆陳情案件,提升客服效率並減輕人力負擔。
此外,意藍的陳情客服輔助服務也具備以下特點:意藍 (6925)將生成式AI與自身核心技術結合,提供多元的AI Search智能搜尋解決方案,賦能合作夥伴,實現了AI技術在智慧城市災防應變,以及智慧政府民意及民眾陳情資訊分析的落地應用,為AI未來城市發展注入新的動能。
Copyright eLAND Information Co., Ltd.